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1~ REPLY REFER TO: WESYV 31 October 1977 

SUBJECT: Transmittal of Technical Report D-77-12 

TO: All Report Recipients 

1. The technical report transmitted herewith represents the results of 
an investigation to develop a model for predicting estuarine sediment 
transport by simulation of erosion, transport, and deposition of sus- 
pended sediments. This study is one of the major efforts to be accom- 
plished under Task 1B (Movements of Dredged Material) of the Corps of 
Engineers' Dredged Material Research Program (DMRP). Task 1B is part of 
the Environmental Impacts and Criteria Development Project of the DMRP. 

2. An important aspect of open-water disposal of dredged material, and 
one that is necessary to predict and understand, is the long-term 
stability or the movement of the emplaced material. This is an integral 
part of the dredging project planning because of the environmental 
implications and potential for influencing the dredging and disposal 
requirements. The complexity of an estuarine hydrodynamic regime and 
the variability of cohesive sediment properties require a detailed 
understanding of the interactive processes effecting sediment transport. 
Extrapolation of data from one estuarine disposal site is not a viable 
mechanism for adequately predicting the final deposition of dredged 
material at another estuarine site with different physical and sedi- 
mentological properties. Mathematically simulating these processes will 
be a significant aid in prediction of the post-depositional fate of 
dredged material in open-water estuarine environments. 

3. This report describes a two-dimensional finite element model developed 
during the study and the initial verification results from an actual 
field investigation. The model (Sediment II) is a modification to the 
vertical from a horizontal model (Sediment I) developed by Dr. Ranjan 
Ariathurai. The model using previous experimentally derived expressions 
for the rates and conditions of erosion and deposition allows for 
continuing aggregation by specifying the settling velocities of floccu- 
lation particles in each element at each time. The bed is formed of a 
number of sediment layers with changing physical properties as the 
overburden changes; a bed profile as well as a suspended sediment 
concentration is provided at each time step. Initial field evaluations 
were made with data collected from the Savannah Estuary, Georgia. 
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4. It is essential to understand that this model is at the forefront of 
the state-of-the-art in cohesive sediment transport modeling and has 
been subjected to very limited testing and evaluation. The model is 
considered to be conceptually sound, but significant additional testing 
and field verification are needed to establish its prediction capability 
and provide the proper guidance for its use. An in-house effort (Work 
Unit lBl0) with the Waterways Experiment Station (WES) Hydraulics 
Laboratory has been established to further evaluate and develop the 
model. 

5. This model will be a useful tool in the impact evaluation of major 
aquatic disposal operations and in evaluating sediment transport and 
deposition resulting from major dredging and deepening projects. Model 
input requirements are rather complex and will necessitate prior planning 
to ensure that the comprehensive data are collected properly. It is 
also anticipated that this model will be used in conjunction with 
physical models at WES for expansion of the model's applicability in 
fine-grained sediment transport prediction. 

m 
Colonel, Corps of Engineers 
Commander and Director 
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PREFACE 

The work described in this report was performed under Contract No. 

DACW39-75-C-0080 entitled "Development of a Two-Dimensional Sediment 

Transport Model," dated January 1975, between the U.S. Army Engineer 

Waterways Experiment Station (WES), Vicksburg, Mississippi, and the 

University of California at Davis (UCD), Davis, California. The 

research was sponsored by the Office, Chief of Engineers (DAEN-CWO-M) 

under the civil works research program, Dredged Material Research 

Program (DMRP). 

This report describes the development of a two-dimensional finite 

element sediment transport model (SEDIMENT II) and verification of the 

model by comparison with actual field data. Appendices to the report 

include user's manuals for the model, finite element grid generation, 

and contour plotting using shape functions. The model described 

herein is a modification of a model (SEDIMENT I) developed by 

Dr. Ranjan Ariathurai for his doctoral dissertation. The trans- 

port processes and sediment properties are based on a combination 

of previous studies that were supported by the U.S. Army Engineer 

District, San Francisco; the Committee on Tidal Hydraulics, U.S. Army 

Corps of Engineers; the National Science Foundation; and the University 

of California. 

The principal investigator for the study was Dr. Ray B. Krone; 

Dr. Ranjan Ariathurai, Project Engineer, assisted by Messrs. Andrew V. 

Maller and Robert C. MacArthur performed the study and prepared the 

report. Drs. Leonard R. Herrmann and Bruce E. Larock provided 

technical advice. The hydrodynamic modeling for the Savannah 

simulation was conducted by Mr. William R. Norton, Resource Management 

Associates, Lafayette, California, under a subcontract. The authors 

of the appendices, which were edited by Dr. Ariathurai and Mr. MacArthur, 

are: Appendix A - Dr. Ranjan Ariathurai, Appendix B - Mr. William R. 

Norton, Appendix C - Dr. Leonard R. Herrmann and Mr. Andrew V. Maller, 

Appendix D - Dr. Ranjan Ariathurai and Mr. Andrew V. Maller, and 

Appendix E - Dr. Ranjan Ariathurai. 
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The contract was managed by Mr. Barry W. Holliday as part of the 

DMRP Environmental Impacts and Criteria Development Project (Dr. Robert 

M. Engler, Project Manager) under the general supervision of 

Dr. John Harrison, Chief, WES Environmental Effects Laboratory. 

COL G. H. Hilt, CE, and COL J. L. Cannon, CE, were Directors of 

WES during the conduct of this study and preparation of this report. 

Mr. F. R. Brown was Technical Director. 
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MATHEMATICAL MODEL OF ESTUARIAL SEDIMENT TRANSPORT 

PART I. INTRODUCTION 

Estuarial Water and Sediment Circulation 

1. The design and maintenance of navigation facilities and the 

management of estuarial water quality are made difficult by the 

complexity of estuarial water and sediment circulations. Effects of 

deepening navigable waterways, of changing shoreline configurations, 

or of discharging dredged material in open waters need to be evaluated 

or predicted for maintenance cost and for water-quality management 

considerations. An accurate predictive model of estuarial sediment 

transport would be very useful for planning and designing optimum 

development of estuaries. 

2. Estuaries are zones of transition from unidirectional, time- 

varying, freshwater flows of land drainage to a tidal, saline ocean. 

Water movements throughout an estuary are affected by any change in 

either the freshwater inflows or the ocean tide, and are otherwise 

determined by the configuration of the estuary and by winds. The 

effects of various configurations include resonances, which produce 

standing waves that affect the tidal range, and friction or narrow 

openings, which delay the progress of tidal change upstream and affect 

the character of freshwater and saltwater mixing. Winds contribute to 

vertical circulations and generate waves that suspend sediment 

deposited in shallow bays. The differences in freshwater and saltwater 

densities cause the ocean water to move landward near the'bottom and to 

mix upward with the fresher water near the water surface. 

3. Sediment circulations are even more complex than that of 

estuarial waters. Eroded soil material enters an estuary with fresh- 

water drainage, by wave erosion of shores, or by aeolian transport. In 

areas having seasonal precipitation, the bulk of the sediment can enter 

during a few winter or spring months, and a portion may pass directly 

to the ocean with high river flows. The eroded material typically 
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contains large amounts of clay and silt materials which, in the 

increasingly saline waters and hydraulic conditions of the estuary, 

aggregate and settle in shallow bays as well as in deepened waterways. 

Onshore breezes occur daily in coastal regions and keep the material 

in shallow areas in suspension while slow tidal currents circulate the 

suspended material. A portion may be carried with ebb tide to the 

ocean and during calm hours the material settles again. Continued 

settling may also occur in deepened channels and harbor areas where 

currents are insufficient to resuspend the material. 

Effects on Aquatic Biota 

4. The effects of sediments on water quality for aquatic biota 

include limitation of the penetration of sunlight and the absorption 

of toxic compounds from solution. The concentrations of nutrients for 

algae in some estuaries are often sufficient to cause excessive algae 

blooms. The rate of multiplication of algae in such estuarial waters 

is limited by a reduced light supply resulting from high turbidity 

caused by suspended sediment particles. Heavy metals and pesticides 

are found sorbed on sediment materials with equilibrium between 

dissolved and sorbed materials frequently favoring the sorbed phase. 

The sediment materials appear to be providing a large assimilative 

capacity for toxic compounds discharged to the waters in wastes. 

Storage of river waters upstream and their diversion for agriculture 

and for urban uses will sharply reduce sediment inflows as water 

resources become more precious. It will be necessary to predict the 

effects of reduced sediment inflows to ascertain the minimum waste 

management needed to achieve desirable water quality. 

5. Due to the low flow velocities prevalent in most rivers 

where they enter estuaries, a large portion of the total sediment load 

is usually composed of suspended silt and clay mineral particles. 

These fine sediments form interparticle bonds when they become 

mutually attractive and can then form aggregates under suitable 

conditions. Their mode of transport and the beds they form are very 
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different from that of noncohesive sands and gravels. Modeling 

sediment circulation requires the application of mathematical 

descriptions of the processes of aggregation, deposition, and 

resuspension to the transport model. Such descriptions are available 

from laboratory and field studies of estuarial sediments. 

Previous Models 

6. Although studies have been conducted on the vertical 

distribution of suspended material in relatively simple flow fields, 

e.g., Dobbins (7), Sayre (24), Jobson and Sayre (lo), the mathematical 

model developed by Odd and Owen (18) was the first to include erosion, 

transport, and deposition. The latter model was one-dimensional and 

considered the flow divided into two unequal horizontal layers. The 

model was designed for the Thames estuary, which was assumed 

rectangular in section with breadth varying exponentially along the 

length. Since then Christodoulou, Leimkuhler, and Ippen (6) developed 

a mathematical model for dispersion in coastal waters. They assumed 

constant flow depth, a simple function for the flow, and did not 

characterize scour or aggregation. The models described worked well 

on the specific problems they were applied to, and have been 

responsible for the development of the art to its present state. 

7. The finite element model SEDIMENT I (1,2) was developed with 

the aim of general application to suspended phase transport in a time- 

varying two-dimensional flow field. It includes expressions for 

erosion and deposition and can account for aggregation. The model is 

applicable to the transport of any conservative material - or of non- 

conservative materials if the reaction rates are known. The vertical 

and axial dimensions with the breadth averaged, or the two horizontal 

dimensions with the depth averaged, may be used in the model. The 

time-varying two-dimensional flow field, obtained from field 

measurements or a hydraulic model, must be provided as input to 

SEDIMENT I to simulate the suspended sediment concentrations and bed 

profile as they vary with time. The model described herein, SEDIMENT 
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II, is a further developed version of SEDIMENT I. 

Purpose and Scope of This Study 

8. The need for descriptions of estuarial sediment movements 

and deposition, and for a means of predicting such movement under 

changed conditions, has been felt keenly by people engaged in design 

of channels and harbors, those concerned with management of dredged 

material, and agencies responsible for the maintenance and enhancement 

of the quality of estuary waters. The study described in this report 

is the latest in a sequence that includes studies of sediment material 

properties including those of suspended aggregates, studies of 

individual transport processes including deposition and erosion in 

flows and under waves, and field studies of sediment material 

circulation in estuaries. This effort combines the information from 

the previous studies in a formal, quantitative way to provide a means 

for describing existing or changed cohesive particle concentrations 

throughout a water body as they change with time. The model also 

describes rates of deposition or bed erosion. 
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PART II. PROPERTIES OF COHESIVE SEDIMENTS 

9. The properties of cohesive sediments relevant to the 

transport process have been presented in different degrees of detail 

in references 1, 2, 3, 12, 13, and 14. These descriptions are 

summarized in this part since they are essential to an understanding 

of the model described in this report. 

Cohesion 

10. Cohesive sediments are comprised largely of colloidal clay 

particles and fine silts which possess colloidal properties to a 

lesser degree. The remainder includes algae, organic matter from 

contiguous drainage areas, and waste materials. Clay minerals are 

hydrated aluminum silicates in a layer lattice crystal structure which 

typically gives the particles platy shapes. They are divided into 

three main groups according to crystal structure, namely: kaolinite, 

illite, and montmorillonite. The positively charged elements 

(cations) of the crystals occupy interior layers, and the electro- 

negative hydroxyl and oxygen atoms are located on the platy surfaces. 

Positive charges are exposed at the crystal edges. The cations in the 

crystal lattice may be isomorphously substituted by other ions, 

generally of lower valence, producing a net charge deficiency which 

makes the surface negative charge even greater. 

11. This surface charge distribution causes clay particles 

suspended in water to adsorb water and to attract dissolved ions that 

form a diffuse layer of ions. These sorbed ions may be exchanged for 

others of like charge when the chemical composition of the surrounding 

medium is changed. The capacity to exchange cations, cation exchange 

capacity (CEC), is usually expressed as the milli-equivalents (me) of 

exchangeable cations held by 100 g of dry mineral. The CEC is an 

effective measure of the activity of a clay, i.e., the extent to which 

it possesses colloidal properties, and depends on the surface charge 

density and the surface area per unit weight of dry mineral. Values 

5 



of CEC of common clay minerals are typically montmorillonite, 50 to 

150 me/100 g; illite, 10 to 40 me/100 g; kaolinite, 1 to 15 me/100 g. 

12. The principal forces between clay particles can be broadly 

classified into coulombic and van der Waal's. The former are due to 

the electric charges on the particles and the distribution of sorbed 

ions surrounding the suspended particle and may be attractive or 

repulsive depending on the type and amount of ions in solution. Van 

der Waal's forces do not depend on the surface charge, are of a much 

shorter range, and are always attractive. The net interparticle 

attraction depends on: 

a. The surface charge density, which is a property of the - 
clay mineral. 

b. The salt concentration of the surrounding water, - 
attraction increasing with increasing concentration. 

C. The valency of the cations in solution, attraction - 
increasing markedly with increasing valency. 

d. The temperature, attraction decreasing with increasing - 
temperature. 

e. The separation, attraction decreasing very rapidly with - 
increasing distance. 

f. The pH of the surrounding water. 
4. The kind of anions in solution. 

13. The net interparticle force determines the potential for 

particles to form aggregates upon collision. It can be seen from the 

above list of variables that particles in a suspension can be made 

mutually repulsive or cohesive by changing the composition and 

concentration of sorbed ions. These ions tend to seek equilibrium 

concentrations with those in the surrounding solution. It is possible 

to predict, from the concentrations of dissolved cations, when the 

various clay minerals become cohesive. Application of the Gapon 

equation to the exchange reaction of the commonest ions in natural 

waters, sodium, calcium, and magnesium, results in an equilibrium 

constant called the sodium adsorption ratio (SARI which is given by 

SAR =4& (2.1) 
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where the brackets indicate concentrations in me/l. 

14. The SAR of the bulk solution is easily determined and is 

proportional to the ratio of exchangeable sodium to calcium plus 

magnesium ions found in the diffuse layer of sorbed ions near the 

mineral surfaces (11). Together the CEC of the clay, the total salt 

concentration, SAR, and pH of the suspending water predominate in 

determining cohesion. The critical concentrations and corresponding 

salinities of diluted seawater at which kaolinite, illite, and 

montmorillonite become cohesive are reported in Ariathurai (1) and 

reproduced in Table 2.1. 

Table 2.1 

Critical Cation Concentrations and Corresponding Salinity 

for Potential Aggregation in Seawater (Ref. 1) 

Clay Type 

Total Cation 
Concentration 

me/l 
Salinity 

g/l 

Kaolinite 1.0 0.6 

Illite 2.0 1.1 

Montmorillonite 4.3 2.4 

15. These values were calculated using SAR and concentration 

data obtained from sedimentation tests that were conducted at variol 

electrolyte chemical compositions (11) to obtain boundary curves 

between aggregated and dispersed states. The range of salinities 

presented in Table 2.1 (0.6 g/l to 2.4 g/l) compares well with the 

1 to 3 g/l range in which Krone (13) observed an increase in the 

median settling velocity. 

1s 
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Aggregation 

16. When suspended clay particles are mutually cohesive and are 

subjected to repeated collision, they form aggregates. These 

aggregates often contain millions of clay particles. Since the 

aggregates are of a much larger size than the primary particles they 

are composed of, they settle at velocities orders of magnitude higher 

than that of the primary particles. Aggregation is therefore a factor 

of major importance in cohesive sediment transport. 

17. There are three principal mechanisms of interparticle 

collision in suspension. The first is due to Brownian motion which is 

produced by the thermal motions of the molecules of the suspending 

medium. The frequency of collision I, on one particle by others, was 

described by Whytlaw-Gray and others (30) as 

(2.2) 

where* 

k = Boltzmann's constant 

T = absolute temperature 

n = number concentration of suspended particles 

1-1 = viscosity of the water. 

Under typical conditions where the water temperature is 20°C, 

I = 5 x lo-l2 n collisions per second. Aggregation rates by this 

mechanism are too slow to be significant in estuaries unless the weight 

concentration is above approximately 10 g/l. Aggregates formed by this 

mechanism have a lacelike structure, are weak, and easily dispersed by 

shearing or are easily crushed in a deposit. 

18. The second mechanism of interparticle collision is that due 

to internal shearing produced by the local velocity gradients in the 

fluid. Collision will occur if the paths of the particle centers in 

* For convenience, symbols and unusual abbreviations are listed and 
defined in the notation (Appendix F). 
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the velocity gradient are displaced less than the sum of their radii, 

which is called the collision radius, R.., 
13 

between i-size and j-size 

particles. The frequency of collision J on a suspended spherical 

particle was derived by Smoluchowski (26) as 

J=fin 
3 

R3 G 
i ij (2.3) 

where G is the local velocity gradient. Aggregates produced by this 

mechanism are relatively dense and strong because only those bonds 

that are strong enough to resist the local fluid stresses remain. The 

product, ni R3 ij' is large when aggregates are mixed with a large 

number of dispersed particles, as is the case in an estuarial mixing 

region. 

19. The third mechanism of interparticle collision results from 

differential settling velocities of different size particles. The 

frequency of collision H due to this mechanism is described by Fuchs 

(8) as 

H = *ERA Vn 
ij (2.4) 

where 

E = a capture coefficient 

V = relative velocity between particles. 

This produces weak aggregates and contributes to the observed rapid 

clarification of estuarial waters at slack. 

20. All three of these mechanisms operate in an estuary. 

Differential settling is probably important only when aggregation is 

already far advanced and the currents are relatively small as at times 

of slack water. In most estuaries internal shearing is by far the most 

important collision mechanism. 

21. Krone (14) described a system of aggregate structures as 

follows: 

Aggregates formed by adding primary mineral particles one 
at a time to form a uniform aggregation are designated a 
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primary particle aggregate or a zero-order aggregate. When 
primary particle aggregates collide with each other and 
aggregate, first-order aggregates are formed. First-order 
aggregates will include interaggregate pores in addition to 
the interparticle pores of the zero-order aggregate and are 
less dense and weaker than zero-order aggregates. First- 
order aggregates can collide with each other to form 
second-order aggregates, and so on. The densities and shear 
strengths of progressively higher order aggregates so formed 
will decrease progressively. If the stress on an aggregate 
already formed exceeds its apparent shear strength, the 
aggregate will be rendered until a lower order aggregate 
having the necessary shear strength remains. A freshly 
deposited cohesive bed surface is one order of aggregation 
greater than that of the depositing aggregates, so that it 
is weaker. Aggregates can be rendered to successively 
lower order when exposed to increasing shearing rates and 
then reform when appropriate hydraulic conditions occur. 
The structure, density, and shear strength are sensitive to 
the previous and prevailing hydraulic conditions. 

22. Densities and shear strengths for a number of estuarial 

sediments obtained from concentric cylinder viscometer tests (13) are 

presented in Table 2.2. 

Settling Velocity 

23. An important sediment property in the modeling of cohesive 

sediment transport is the settling velocity. For particles smaller 

than about 10 microns* in diameter, Brownian motion is significant 

compared with gravitational motion (15). The downward flux of these 

particles in a standing cylinder settling test is the net result of 

gravitational motion and thermal diffusion. When the settling 

particles are cohesive they aggregate on collision forming larger 

aggregates with higher or lower settling velocities. This process 

further complicates the settling velocity determination. 

24. In a steady state flow with a logarithmic velocity profile, 

the concentration Cz of uniform suspended particles at elevation z 

* A table of factors for converting customary units to SI units is 
presented on page ix. 
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Table 2.2 

Properties of Sediment Aggregates 

Order of 
Sediment Sample Aggregation 

Wilmington 
District 0 

1 

2 

3 

CEC Density 
me/100 g g/cu cm 

32 1.250 

1.132 

1.093 

1.074 

Shear Strength 
dynes/sq cm 

21 

9.4 

2.6 

1.2 

Brunswick Harbor 0 38 1.164 34 

1 1.090 4.1 

2 1.067 1.2 

3 1.056 0.62 

Gulfport Channel 0 49 1.205 46 

1 1.106 6.9 

2 1.078 4.7 

3 1.065 1.8 

San Francisco Bay 0 34 1.269 22 

1 1.179 3.9 

2 1.167 1.4 

3 1.113 1.4 

4 1.098 0.82 

5 1.087 0.36 

6 1.079 0.20 

White River (salt) 0 60 1.212 49 

1 1.109 6.8 

2 1.079 4.7 

3 1.065 1.9 
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above the bed can be shown to be 

?= (&y (c$ (2.5) 

where 

a = some reference elevation at which the concentration Ca is 

known 

d = depth of flow 

5 = vpu, 

V 
S 

= settling velocity 

k = von Kannan's constant 

U * = shear velocity. 

By measuring the concentrations and currents at a number of points in 

the vertical, it would be possible to use equation 2.5 to compute the 

settling velocity. If it can be assumed that the suspended aggregates 

have reached a terminal size because of the uniform flow and low 

suspended solids concentration, and if the velocity profile is 

logarithmic, the settling velocities so obtained may then be used to 

predict settling rates when the flow conditions are changed as long as 

the change is not drastic. Such conditions can be expected in only a 

limited number of cases. 

25. The results of extensive studies (13,17,18,20) on the 

settling velocities of cohesive sediments in still water can be 

summarized as follows. 

Effect of concentration 

26. Three ranges of concentration have been identified in which 

the settling velocity of aggregates varies in different ways. The 

first range is for suspended sediment concentrations from 0 to some 

Cl g/l. In this range the number concentration is so low that there is 

very little mutual interference between the particles and further 

collisions are infrequent. The settling velocity can be assumed a 

constant for the particular hydraulic conditions. When terminal 

aggregate size has been reached, the settling velocity in this range 

was found to follow the relationship: 
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V = KCm 
S 

o<c<c - - 1 (2.6) 

where 

K = empirical constant 

C = suspended sediment concentration 

m = empirical exponent. 

27. In the second range, C 1 < c --c c2 s/l, there is significant - - 
mutual interference between flows around the settling aggregates - 

"hindered settling" is said to occur. A sharp demarcation of the 

sediment surface appears and settling at a uniform velocity begins. 

This hindered settling velocity of estuarial sediments was shown by 

Pierce and Williams (22) and of activated sludges by PlcGauhey and Krone 

(16) to be described by the Richardson-Zaki relation 

V 
S 

= VP (1 - $qa (2.7) 

where 

V 
P 

= settling velocity of individual aggregates in a dilute 

suspension 

$J = volume concentration of suspended aggregates 

a = constant that was determined by Richardson and Zaki to be 

4.65 (a = 5 is often assumed). 

Pierce and Williams applied equation 2.7 by considering $ = bC, where 

C is the weight concentration and plotting Vs l/5 vs c. An unchanged 

aggregate structure over the range of concentrations studied was 

assumed. The points should fit a straight line, and values of V 
P 

and C can be calculated from the intercept and slope of the line, 

although these have not been verified by other measurements. 

28. Settling particles accumulate on the bed or bottom of a 

settling cylinder at concentrations above C 2 and form a steadily 

deepening deposit. If the settling particles were sand or silt, the 

structure of the deposit would not be altered significantly as over- 

burden increases, but particles that are aggregates of cohesive 

mineral or organic particles crush linearly as the overburden develops 
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until the larger void spaces are collapsed, then crush a smaller amount 

with increasing overburden as smaller pores collapse. 

29. The time rate of consolidation is determined by the rate at 

which expelled pore water can work its way upward through the deposit. 

The most useful description of the consolidation of a deposit is the 

empirical relation proposed by Bosworth (4), i.e., 

(2.8) 

where 

h = the measured height of the deposit surface above the rigid 

bottom 

h 00 = the final consolidated height 

t' = a characteristic time 

t = the time of consolidation at which h is measured. 

30. The values of the critical concentrations 5. and c2 
and 

the exponent m in equation 2.6, obtained by various investigators, 

are summarized in Table 2.3. 

Table 2.3 

Settling Velocity Parameters for Sea Water 

Investigator Cl c2 m 
(Reference) g/l g/l 

Krone (13) 0.3 10 4/3 

Odd and Owen (18) 0.05 15 1 to 2 

Owen (20) 9 -1 

Migniot (17) 10-20 "1 

Effect of salinity 

31. The effect of increasing total salt concentration and 

varying the SAR has been discussed in Part II. However, the effect 

of increasing the salinity beyond the concentration required to make 

14 



the particles mutually attractive is not understood clearly. For 

sediment concentrations less than 1 g/l, Krone (13) observed no 

significant change in the settling velocity above a salinity of about 

5 g/l. Owen (20) conducted a number of settling tests at various 

salinities and observed that the settling velocity increases with 

salinity up to a value which was between 28 and 43 g/l, depending on 

the concentration of sediments. After this value, there was a decrease 

in the settling velocity with increasing salinity. Evidently, the 

salinity affects the density of the settling aggregate. 

Effect of depth 

32. The depth through which settling occurs affects the 

settling velocity only if aggregation is continuing. It would then be 

expected that the greater the depth through which particles settle, 

the greater would their settling velocities become as aggregation 

continues. However, it has been observed (20) that the settling 

velocity actually decreased in the first meter or so and then 

increased to a terminal value at a depth of about 2 m. 
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PART III. TRANSPORT PROCESSES 

33. Erosion, convection and diffusion, and deposition 

constitute the transport processes. Cohesive sediments move entirely 

as suspended load and form a cohesive bed when they are deposited. 

Descriptions of estuarial sediment transport processes have only been 

obtained during recent years. This section presents a distillation of 

these descriptions obtained during a succession of laboratory and field 

studies. 

Erosion 

34. The electro-chemical bond between cohesive particles must 

first be broken before detachment and transport of such materials can 

take place. The factors that determine the strength of this electro- 

chemical bond have been discussed in the previous chapter with respect 

to suspended sediments. All of those factors affect the erodibility 

of a cohesive bed as well. Clay minerals, particularly montmorillonite, 

form gels when they settle on the bed and are left undisturbed. If the 

gel is mechanically sheared, it becomes a slurry, then the gel 

gradually redevelops. This behavior is typical of colloids and is a 

property termed thixotropy. Kaolinite and illite exhibit this 

property to a much lower degree unless aided by the presence of 

organic matter. 

35. Most natural cohesive beds are hydraulically smooth in the 

range of flow conditions encountered in practice. Hence, the 

hydraulic shear stress at the bed is an accurate measure of the 

entrainment force. Since the interparticle bonds must be broken before 

entrainment can take place, it would be expected that a critical shear 

stress must be exceeded before surface erosion of a bed can begin. 

Extensive laboratory experiments (11,12,13,17,20) have shown this to 

be true. The critical shear stress of a cohesive bed is defined as 

the intercept on the shear stress axis on a plot of erosion rate vs. 

bed shear stress. 
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36. The resistance of a cohesive bed to erosion by flowing 

water depends on the following: 

a. 
b. 

The types of clay minerals that constitute the bed. 
- Structure of the bed, which in turn depends on the 

environment in which the aggregates that formed the bed 
were deposited, elapsed time, temperature, and the rate 
of gel formation. 

C. - The chemical compositions of the pore and eroding 
fluids. 

d. - Stress history, i.e., the maximum overburden pressure 
the bed had experienced and the elapsed time at various 
stress levels. 

e. - Presence of organic matter and its state of oxidation. 

37. The greater the overburden pressure and elapsed time, the 

greater the resistance to erosion. Krone (12) presents the variation 

in critical shear stress with depth of deposit obtained from 

experiments in a recirculating flume. It was observed that the 

aggregates that settle out are crushed by those settling above, 

resulting in an increased number of interparticle bonds causing an 

increase in resistance to erosion. This increase in resistance to 

fluid shear stress occurred in layers of about l-inch thickness until 

the overburden was sufficient to crush the aggregates to primary 

particles. Beyond this depth the bed resists erosion as any saturated 

coh.esive soil deposit, the erodibility of which has been studied by 

investigators such as Kandiah (11). 

38. At bed shear stress just above critical value, erosion 

occurs particle by particle; this process is called surface erosion. 

At higher levels of stress, however, the bulk shear strength of the 

bed may be exceeded. The portion of a bed in such a state is 

susceptible to mass erosion, i.e., as the bed shear exceeds the 

critical shear stress of that portion of the bed, it fails totally and 

is instantly suspended. 

39. To model the transport process, it is necessary to know the 

critical shear stress of each stratum of the bed and also the erosion 

rate if the erosive mechanism is surface erosion. At present, 

laboratory measurements must be made to obtain these parameters. The 

critical shear stress for scour and rates of erosion may be measured 
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in a flume for beds of relatively low strength. Stronger beds may be 

tested in the rotating cylinder apparatus by the method described by 

Sargunam et al. (23), although this method is not suitable for thin 

layers. 

40. The erosion rate for particle erosion is given by 

Partheniades (21) as 

(dm/dt) e = M bb/Tce - 1) 

>Tc 'b - ce 

(3.1) 

where 

(dm/dt) e = mass rate of erosion per unit area 

Tb = bed shear stress 

T = critical shear stress for erosion ce 
M = erodibility constant. 

If d is the local depth of flow, 

(dC/dt) = (dm/dtje/d (3.2) e 

is the rate of change of concentration of the suspension due to erosion 

of the bed. 

41. When mass erosion occurs 

(dC/dt) = (Am/At)/d e 

where 

Am = mass eroded per unit bed area 

At = a characteristic time in which erosion occurs. 

Deposition 

(3.3) 

42. When the shear stress on the bed is not sufficient to 

resuspend particles that contact and bond with the bed, deposition 

occurs. The shear stress at which there is an incipient net rate of 
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deposition is termed the critical shear stress for deposition. This 

value may be the same or less than the critical shear stress for 

erosion, depending on the history of the bed surface. 

43. As a result of extensive laboratory studies, Krone (12) 

described the depositional behavior of cohesive sediments in the 

following manner. 

44. The probability P of particles sticking to the bed 

increases linearly with a decrease in the bed shear and is given by 

P=l - -rb/T cd (3.4) 

where 'I cd = critical shear stress for deposition. In the absence of 

continuing aggregation of the transported aggregates, the rate of loss 

from suspension is 

%I =-y 
d 

where d = average depth through which the particles settle. 

Integration of equation 3.5 leads to 

log 5 = - Kot 
0 

(3.5) 

(3.6) 

where K 
0 

= VsP/(2.3 d). This relation was verified in a recirculating 

flume where the aggregation rate was found to be negligibly slow at 

concentrations below 300 mg/l so long as unusual eddy-producing 

disturbances to the flow were avoided. 

45. At higher concentrations, or under flow conditions where 

collisions of suspended particles are frequent relative to the time of 

observation, a relation that includes the effect of continuing 

aggregation was demonstrated that simplifies to 

log 5 = - K2 log t 
0 

(3.7) 

where 
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K2 
= empirical constant 

cO 
= initial concentration 

t = elapsed time. 

The coefficient 
K2 

equals K3VsP/d, where 
K3 includes properties 

of the aggregating aggregate. For practical purposes, K V 
3s can be 

combined to give an empirical constant. 

Mass Balance 

46. Since the sediment-water system is a binary solid-liquid 

mixture the mass balance for sediment must be developed with care. In 

a diffusing mixture the various species move at different velocities. 

In addition, the negatively buoyant sediment particles will settle 

with respect to the suspending water, so that the vertical convective 

velocity of the water differs from that of the sediment by the 

settling velocity V . 
S -f 

47. The local mass averaged velocity V for the mixture is 

defined as 

+ v = (Cw s, + c G,, / (C + Cl 
W 

(3.8) 

where 
-f 

3 
= velocity of water 

v2 
= velocity of sediment 

C = mass of water/volume of suspension 
W 

C = mass of sediment/volume of solution. 

The density of the suspension p equals (C + Cw). 

48. Choosing a fixed Cartesian system of axes with the x-axis 

along the longitudinal, pointing downstream; the y-axis vertical, 

opposite to the direction of gravity; and the z-axis from left to 
+ 

right, the convective velocity of water vl' and of sediment G 2 may 

be written as 

-f 
v1 = UT + v; + w; 
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-f 
v2 

=ul+ (v+vs,~+wit (3.9) 

where u, v, and w  are the components of the fluid velocity. 

49. Here the water and sediment are assumed to convect in the 

two horizontal directions, x and z, with identical velocities. The 

settling velocity Vs will be negative except for positively buoyant 

particles. 

50. The law of conservation of mass applied to the sediment 

yields 

x+v at l cG2 + v 
.&s (3.10) 

where 
+ 
f = diffusive flux 

S = source/sink term to account for addition or removal of 

sediment. 

51. By Fick's law 

z = - p M V(C/p) (3.11) 

where M is the molecular diffusivity. The equation for continuity 

for the mixture is 

*+v at l pG=o 

52. For suspensions with relatively low concentrations of 

sediment, p may be assumed constant. Then equation 3.10 can be 

written as 

z+v at l C$,=v*MvC+S 

(3.12) 

(3.13) 

53. For turbulent flows with temporal velocity fluctuations 

such as u', and concentration fluctuations c', a Fickian analogy is 

used, so that 
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u’c’ = - e ac - 
x ax etc. (3.14) 

Here e X = turbulent diffusion coefficient, and the overbars signify 

time averaging. 

54. Then 

i%+Q.& =Q 
at 2 

l EQC+S (3.15) 

where E=e+m is the diffusion tensor, in which the off-diagonal 

terms are neglected. The above equation is applicable to the 

convection and diffusion of sediment in a three-dimensional flow field. 

The concentration or its normal derivative must be specified everywhere 

on the boundary of the domain as a boundary condition. 

Two-Dimensional Transport Equation 

55. If it is necessary to use the two-dimensional form of the 

convection-diffusion equation (3.15), as is the case in this study, 

the mass balance must either be obtained by macroscopic consideration 

or by integration. 

56. Usually there will exist both velocity and concentration 

profiles in the direction that is being averaged. For example, when 

depth averaging (y-direction), the lateral velocity components u and 

W and the point concentration C will vary with depth. This gives 

rise to dispersion terms. 

57. The governing equation (3.15) can be integrated over the 

depth d, with b(x,z) being the elevation of the bed and h(x,z,t) 

that of the free surface, so that d=h-b. The velocity components 
- 

and concentration along y are expressed as a mean value c, for 

example, and a deviation c", i.e., 

c = c + c” etc. (3.16) 

Then 
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h 
c" dy = Fk” -= 0 

3X 
etc., in exactly the same fashion as in 

b 
temporal averaging. 

Also: 

1 J 
h CC- 

d b 
c dy 

Writing Leibnitz' rule as 

h ac 

I 

h 
b zdy = & b c dy - [clh~+ Iclbg 

and again using Fickian analogy 

ullcll = - K a: - 
x ax 

(3.17) 

(3.18) 

(3.19) 

where 

K 

vx 

= a dispersion coefficient 

l V = 0 for a fluid of constant mass density 

av 
- = 0, i.e., 
aYs 

settling velocity is constant over the depth. 

58. The depth-integrated equation for mass conservation reduces 

to 

ac ac ac a -+u-+w--=-D a 
at ax aZ ax 

Z+-, 
x ax aZ 

x+s 
z az 

(3.20 1 

where D 
X = Kx + E is the effective turbulent diffusion coefficient 

X 

The velocities and concentration in the above equation are both time 

and depth averaged. For the depth-averaged equation (3.20), the 

source/sink term S is the rate of erosion or deposition. At solid 

boundaries such as the banks $n equals 0, where n is the normal 

direction. The breadth-averaged equation is 

ac+U%+ (V+V)~=&, 
at ax 

ac+&, 
s ay ax x ax 

x+s 
ay Y ay 

(3.21) 
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There can be no flux across the free surface and the boundary 

condition there may be written as 

{UC - Dx $j}nx + (iv + Vs)c - Dy 2) ny t 

{WC - Ds $$ns = 0 (3.22) 

where nx, n , and ns 
Y 

are the components of the unit normal to the 

free surface. 

At the bed interface, whatever material convects or diffuses 

out is considered to be part of the depositional flux. The normal 

diffusive flux fn is specified as 

fn . 
'b = E + v,c - 

'cd 
(3.23) 

. 
where s is the normal flux due to erosion and the second term is 

the part of the depositional flux that is resuspended and is always 

positive. 
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PART IV. NUMERICAL SOLUTION BY THE FINITE ELEMENT METHOD 

59. For both the vertical and horizontal models it is necessary 

to solve an equation of the form 

ac ac ac a -+u-+w-=-D ac a ac 
at ax a2 ax x Z + aZ DZ Z + YC + a2 (4.1) 

which is a second-order, linear, parabolic, partial differential 

equation. Traditional time marching solutions would involve the 

solution of the elliptic spatial equation which results on discretizing 

the time derivative alone. Except for schemes which are fully implicit 

in the space dimensions, high ratios of convective transport to 

diffusive transport result in instability. 

60. The finite element method (FEM) is used in this model in 

preference to the finite difference method (FDM) for the following 

reasons: 

a. - The FEM permits the use of arbitrarily shaped elements 
without loss in the order of convergence; the 
quadrilateral elements used in this study may even have 
curved sides. 

b. - Regions of rapid change in which it would be desirable 
to concentrate elements and "islands" in the domain 
are handled easily by the FEM. 

C. - Derivative boundary conditions require special treatment 
in the FDM, whereas in the FEM they are included 
directly. 

d. - Stability is less of a problem with the FEM. 

61. The main disadvantage of the FEM is the more complex 

formulation and coding. 

62. It is more economical, in terms of computational effort and 

computer memory, to solve the elliptic equation that results by 

treating the term (k/at) as an instantaneous constant and then 

marching in time. The elliptic equation 

ac ac aD ac LD U~+“~-ax xs-aZ 
ac 

z~-alC+Q=O (4.2) 

where Q = (k/at) - a2 is first solved by the finite element method. 
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The transient problem is then solved by a finite difference scheme. 

This method yields a more accurate solution than the finite element in 

both space and time. 

Application of the Finite Element Method 

63. The finite element method is an approximate method of 

solving differential equations and is described in a number of texts 

such as Zienkiewicz (31). 

64. The method is applied in the following basic steps: 

a. Divide the domain into a number of finite elements. 
iT. Approximate the dependent variable within each element - 

and express this approximation in terms of the unknown 
values at the element node points - the number and 
location of the nodes must ensure continuity of 
dependent variable values across element boundaries. 

C. Minimize an appropriate measure of error so that a set - 
of simultaneous equations results. 

d. Include the boundary conditions. - 
e. Solve the resulting set of equations for the node point - 

unknowns. 

65. Quadrilateral, isoparametric elements with a quadratic 

approximation for both the geometry and concentration are used. 

Parabolic element sides are therefore permissible. 

66. Variational functionals for equation 4.1 have been 

presented by Guymon et al. (9) and Smith et al. (25). However, these 

measures of error have very limited applicability due to the inability 

of existing computers to handle the exponentials involved. The 

Galerkin Weighted Residual Method, which does not encounter such 

problems, is used in this solution. 

Galerkin weighted residual method 

67. The governing differential equation 4.2 can be written as 

L (C) = 0 (4.3) 

where L is a differential operator. A 
68. If the approximate concentration C given by 
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g = Nici i = 1,8 (4.4) 

(where N i are the shape functions - see Appendix A) is substituted 

for C in equation 4.3, a residual r (x,z) would result, i.e. 

L Cc) = r (x,z) (4.5) 

xtz 3 D 

where D = entire domain. 

69. The approximation C satisfies the concentration boundary 

conditions exactly, although it would not in general satisfy the 

derivative boundary conditions exactly. Therefore, both on the element 

interfaces and external boundaries, it must be required that the 

algebraic sum of the normal concentration fluxes from adjacent elements 

and any source or sink equals zero. 

70. Then 

qi+ + qi- + qis = 0 
(4.6) 

5 3 Ri , i = 1, NL 

where 

NL = number of internal and external boundaries J?, 

qi+ = 
i 

outward normal flux from one element 

q.- = 1 flux from adjacent element 

qis = flux from source on the boundary i 

5 = variable length along the boundary. 

On external boundaries, only one element contributes to the flux, so 

that qi- = 0. 

71. Since the fluxes, q. 
+ 

1 and q. , 1 in equation 4.6 are also 

computed from the approximate concentration c an additional residual 

P(E) would result, i.e., 

p(C) =;++;-+qS 
i i i 
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f?, 3 Ri , i = 1, NL (4.7) 

where are approximate fluxes. 

72. Then the total residual R (x,z) over the entire domain 

D is given by 

R (x,z) = p (x,z) + r (x,z) (4.8) 

73. The Galerkin method applied to this system yields 

NE 

c II 
1 D ne 

NL 
,-. 

Nj L(c) dxdy + CJ 
Nj p dc = 0 

i=l 5 

(4.9) 

where 

NE = number of elements 

D = element subdomain ne 
NL = number of element boundaries 

j = number of node points in each element. 

74. The diffusion terms in the above equation are second 

derivatives and would require continuity of slopes at all element 

interfaces to avoid singularities in these terms (31). To avoid this 

restriction the second derivatives are reduced to first derivatives by 

the transformation described next. 

Transformation of the diffusion terms 

75. Consider the equation 

I 
N L(C) dV = 0 

V 

(4.10) 

on some domain V, where L is the same d ifferentia 1 operator as 

before. 
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76. Then 4.10 may be written in vector form as 

N {%vC - 6 - cilC + Q} dV = 0 (4.11) 

V 

where the vector operators "del" and "grad" are two-dimensional (x and 
-f 

z directions); N (x,2) and c (x,z) are scalar fields; F = DVC is 

the diffusive flux vector; and D is a tensor. Both N and C are 

continuous in V. 

77. By a vector identity 

N v*f; = v* (N & - (VN) l !i 

78. According to the Divergence Theorem 

v'(N ;)dV = N!S l ;: ds 

V S 

(4.12) 

(4.13) 

-f 
where n is the outward normal to the surface S which contains the 

domain V. 

79. Then 

N 0.; dv = NS l ;:ds- 
I 

(VN) l ; dv 

80. Hence 

N L(c)dv = ; l VC + (VN) l (D VC) + N(Q - cyc) dV 1 

-I (N D VC) l ;: ds 

(4.14) 

(4.15) 

S 
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81. If the above relationship is substituted in equation 4.9 

2 

ne=l 

j-1 [Nj (e + u ig + w g - y) + 2 Dx 5 

ne 

+ 2 DZ $j] dxdz - $Nj (Dx 6 nx + Do -$ n.> dR 

ne 

NL 

+ 
CJ 

A+ A- 
Nj (9. + q. (4.16) 1 1 ++ d<=O 

i=l 5 

where 
P 

is the contour integral over the boundary R of each 

element and n n 
x' 2 

are the components of the outward normal to the 

element subdomain D ne- 
82. By Fick's Law 

9, 
=D,g etc. 

83. Therefore, 

(4.17) 

NL 

CJ 
Nj (ii+ + Gi-) d5 = 

i=l 5 

2 s Nj {Dx $ l nx + DZ 6 l n,} dJ? (4.18) 

ne=l ne 

and equation 4.16 may be written as 
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?JE 

c II 
ne=l D ne 

8N. 

+ a,' 
Dz $j dxdz +z 

i=l 

N. q. 'dc=O 
7 1 

(4.19) 

84. The concentration or diffusive flux must be specified along 

the boundaries as boundary conditions. The quantities in 4.19 are 

derived from the shape functions as in Appendix A. 

Transient Problem 

85. Equation 4.19 may be written as the matrix differential 

equation 

aid 
[T1 at - + [K] {Cl + {F) = 0 (4.20) 

where 

[Tl = [NITIN] dxdz 

D 

[Kl = steady state system coefficient matrix 

{F} = 
II 

- iNIT {a,} dxdy + 
I ENIT {q}' dc 

D 5 

86. The area integrals are for the entire domain and 5 is the 

boundary contour. The derivation of these arrays is presented in 

Appendix A. 

87. If the above equation is discretized with a Crank-Nicolson 

type scheme in time 
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E + e[K] (1 - 8) [Kin w  

+ e{F)n+1 + (1 - e)(F)" (4.21) 

where 8 = implicitness factor (8 = 1, fully implicit). 

88. This is a two point recurrence relationship between the 

concentrations Cn+l n and C , at time steps (n+l) and n. It is this 

equation that is solved to yield the transient concentrations at each 

time step. 

The Bed 

89. The sediment bed is considered to be composed of a number 

of layers of known bulk density, shear strength, critical shear stress 

for erosion, and thickness. The local bed elevations, with reference 

to some fixed datum, and the layer properties are the initial bed 

conditions. As transport occurs in the fluid domain, there is 

interchange between the material on the bed and that in suspension by 

the processes of erosion and deposition. The bed is treated on an 

element by element basis, so that the bed properties and elevation 

within each element are assumed constant. 

90. When deposition occurs in a time interval of duration At, 
for a particular element, the dry mass of sediment M transferred to 

the bed is given by 

dC M=dtxAtxV (4.22) 

where dC/dt = rate of deposition obtained from equation 3.5, and 

V = volume of suspension in the element. The rate of deposition varies 

with time and the value used for the time interval is the temporal 

average. As deposition continues, the increased overburden pressure 

causes the material below to consolidate and consequently increase its 

density and resistance to erosion. Krone (13) found that an overburden 
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thickness of about 1 inch (2.5 cm) causes the aggregate forming the 

bed to reduce to the next lower order. The densities and shear 

strengths for different orders of aggregation of a number of sediments 

were presented in Table 2.2. 

91. The thickness T of deposit formed on the bed by dry mass 

M is computed as 

T= (PS - 'w) M 
P,(P, - P,) x x 

(4.23) 

where 

P 
S 

= density of clay particle 

PW 
= density of water 

pB 
= bulk density of layer 

A = area of element for horizontal model; (length of base x 

width) for vertical model. 

92. If T is greater than the characteristic thickness, 1 inch 

in this case, more than one layer would be added to the bed. In such 

a case the mass M should be divided into the number of layers formed 

with the appropriate bulk density for each layer. 

93. Erosion occurs when the shear stress at the bed is greater 

than the critical shear stress of the uppermost layer. Each successive 

layer is then tested for possible erosion. When mass erosion occurs 

the contribution to the source term AS due to the erosion of one 

layer is 

p,(p, - p,) T 

As = (Ps - Pw) 
(4.24) 

where d = average depth of flow in the element. 
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PART V. STABILITY AND CONVERGENCE OF NUMERICAL SCHEME 

94. It is possible to check the accuracy of the numerical 

scheme by solving certain special forms of the governing equation that 

have known exact solutions. The numerical solution obtained can be 

compared with the exact solution to determine stability and order of 

convergence. 

Test Problems 

95. The following equations which apply to a number of physical 

problems were solved with the finite element model. The usual plots 

of numerical and exact solutions are not presented since, in most 

cases, the difference between the two is not discernible on an 

ordinary graph. However, the magnitude of the error in each case can 

be seen in the section entitled "Convergence Characteristics." 

Steady state one- 
dimensional convection-diffusion 

96. Equation 

dC d2C 
"Z 

-J, -- 
x dx2 

s=o 

where S = constant source-sink term. 

Boundary Conditions 

C(o) = a 

dc 
dxL= I 

0 

Exact Solution 

SD -N -N 

C=a+X 'e 'e(l-x/L) 
2 - e t +sX 

U 
U 

(5.1) 

(5.2) 

(5.3) 
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where L = length of system and N = uL/Dx is the Peclet number, 
Pe 

which is the ratio of convective transport to diffusive transport. 

97. A rectangular grid with elements of equal length was used 

in the numerical solution. The values of the parameters used were 

S = 5, L = 1, u = 1, a = 1, and Dx = 1. The largest relative error 

obtained, i.e., for the run with one element, was 4 x 10 -3 
. 

Laplace equation 

98. The Laplace Equation was solved for a rectangular domain, 

O<x<a,O<y<b, with a parabolic boundary condition for a - - - - 
quantity such as temperature, specified on y = 0. 

99. Equation 

D &+D 
x ax2 

tic0 
y ay2 

Boundary Conditions 

c = fix), y = 0, O<x<a 

c=o , Y = b, O<x<a 

c=o I x = 0, O<y<b 

c=o , x = a, O<y<b 

with f(x)=% (a-x) 
a 

(5.4) 

(5.5) 

Exact Solution 

c= 
22 

f Sin(nnx/a) Sinh /Sinh(nnb/a) 
n I 

n=l 

where 

f = 4d (1 - Cos n'T) /n3n3 (5.6) 
n 

100. Due to the large arguments in the hyperbolic sines, double 

precision arithmetic must be used to compute the exact solution when 

using a digital computer. Since the series converges slowly, a 
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sufficient value of n must be chosen depending on the accuracy 

required. The values a = 3, b = 4, and d = 40 were used in the 

trial solution. 

One-dimensional 
transient heat conduction 

101. Equation 

ac a2c -=Jj - 
at x ax2 

Boundary Conditions 

C = 0 I O<x<l, t=o 

c c, = x=L , t>o 
ac O -= 0 
ax ’ x=0 , t>o 

(5.7) 

(5.8) 

Exact Solution (Reference 5, p. 100) 

co 

C 
-=l-+ 

c 

c-m2T2T/4 (-1) n mTrx 
C m cos 2L 

0 n=O 

where 

Dt 
m = 2n + 1, and T=-II- 

L2 
(5.9) 

Here t is the elapsed time. The values C = 1, T = 0.1, and L=l 
0 

were used in the test problem. 

Heat conduction with radiation 

102. This test problem was chosen to check the flux boundary 

condition formulation that is necessary in the model due to the 

resuspension term at the bed. The governing equation is the same as 

equation 5.7 with the boundary conditions 
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c=o , 0 < x < R, t=o - - 

C =c 
ac O ' 

x = R, t>o 

ax+ hc = 0, x=0 t>o (5.10) 

103. The exact solution is similar to that given in Reference 5, 

p. 126, i.e., 

-B2T 
2(Bn2+h2L2) Sin 6,(1-x/L) e n 

a,(hL + h2L2 + + 
(5.11) 

where @ 
n 

are positive roots of BCotB + hL = 0, h = linear heat 

transfer coefficient for the surface, and T = time factor as defined 

in equation 5.9. Values of h = 0.7, C = 2, and L = 1 were used. 
0 

Transient convection-diffusion 

104. Equation 

3C LX a2c 
~+"~-Dx,x2=0 

Boundary Conditions 

c=o, x > 0, t=o 

c=c 
Or 

x = 0, t>o 

c=o, x=cO I t>o 

(5.12) 

(5.13) 

The exact solution is derived by Ogata and Banks (19) as 

t= $ ["'"(z)+ exp (3 erfc(z)1 (5.14) 

where < = ut/x and n=D/ux. 
X 

105. Here again double precision arithmetic must be used to 

evaluate the exact solutions when using the computer. A number of runs 

were made with various Peclet numbers (N = uL/Dx). The distance x 
Pe 
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which can be considered to be 00 for solution purposes depends on the 

velocity u and the time t. For ut/x << 1 a domain of unit length 

can be used as was done here. 

Convergence Characteristics 

106. An estimate of the maximum absolute truncation error E 

resulting from discretization may be expressed as 

E = Khm (5.15) 

where 

K = coefficient involving the derivatives of the dependent 

variable 

h = the step size or spacing 

m = the order of convergence. 

For a stable and consistent numerical scheme, as h -f 0, the true 

solution is approached, both K and m become more nearly constant. 

The exponent m is termed the asymptotic convergence factor and K 

can similarly be termed the asymptotic convergence coefficient. Both 

of these quantities are important in error estimation. 

107. Taking the logarithm of both sides of equation 5.15 

yields 

log E = m log h + log K (5.16) 

108. The maximum absolute error produced by a numerical 

solution is obtained by comparing it with the exact solution at each 

of the discrete points, so that 

E = (E.1 1 max 
where 

& i =c -c 
I i ex I 

(5.17) 
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in which C i = numerical solution and C = exact solution. ex 
109. The asymptotic gradient of the plot of log & vs. log h 

would be m, and the intercept at h = 1, log K. A number of test 

runs, with progressively larger numbers of elements or smaller time 

steps, were made for each of the problems described in the previous 

section. Plots of number of elements vs. maximum absolute error are 

presented on log-log scale for solutions to the steady state 

convection-diffusion equation and the Laplace equation in Fig. 5.1 and 

Fig. 5.2, respectively. 

100 --I , I I 1 1 a - 

0 
Convergence Factor = 3.9 

Convergence Coeff. = 36.3 

10-7 lt+ 10-5 10-4 10-I 10-2 
MAXIMUM ABSOLUTE ERROR 

Fig. 5.1. Order of Convergence of Solution to the 
1-D Convection-Diffusion Equation 

Convergence Factor = 2.2 - 

Convergence Coeff. = 12.8 - 

MAXIMUM ABSOLUTE ERROR 

Fig. 5.2. Order of Convergence of Solution to Laplace Equation 
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The quadratic approximation within the element would be expected to 

yield second-order convergence for the steady-state problems (Strang 

and Fix, 28). However, the one-dimensional convection-diffusion 

solution shows quadratic convergence. The reason for this increased 

accuracy may be the nullification of some of the higher derivatives in 

the error term for this particular problem. 

110. In general, for the implicitness factor 8 other than 

0.5, the error term would be 

and for 8 = 0.5, 

E = 6(Ax2) + ecAt, (5.18) 

E = e(Ax2) + e(At2) (5.19) 

111. When temporal convergence tests are made, sufficient 

number of elements must be used to ensure that the spatial error is 

much smaller than the temporal. Figure 5.3 is the log-log plot of 

time step size vs. I& for the solution to the transient heat 
max 1 

conduction equation. Figure 5.4 is a similar plot for the same 

problem except with radiation at one end. 

10-2 

Factor = 0.92 
Coeff. = 4.1 

! 
#lElements = 10 

10-3 I II I II 
10-3 10-2 10-l 

MAXIMUM ABSOLUTE ERROR 

Fig. 5.3. Order of Convergence 
of Solution to Heat 
Conduction Equation 

10-l 

10-2 

Convergence Factor = 0.97 
Convergence Coeff. = 4.00 - 

10-3 4 
10-j 10-2 10-l 

MAXIMUU ABSOLUTE ERROR 

Fig. 5.4. Order of Convergence 
of Solution to Heat 
Conduction Problem 
With Radiation 
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112. The transient convection-diffusion equation (5.12) was 

studied in more detail since it possesses all the elements of the full 

governing equation, i.e., temporal, convective, and diffusive, except 

that it is one-dimensional in space. The results of these test runs 

are discussed in the sections that follow. 

113. The convergence characteristics of each of the problems 

solved are presented in Table 5.1. These numbers, when substituted in 

equation 5.16, give an error bound for the respective problems. 

Table 5.1 

Convergence Characteristics of Solution 

Problem Asymptotic Convergence Asymptotic Convergence 
Factor Coefficient 

1-D Convection 
Diffusion 

Laplace Equation 

Heat Conduction 

Heat Conduction 
with Radiation 

3.9 36.3 

2.2 12.8 

0.92 4.1 

0.97 4.0 

Stability 

114. Stability alone does not necessarily mean that the 

deviation between the true solution to a certain partial differential 

equation and its numerical approximation will be in any sense small. 

Rather, it implies boundedness of the numerical solution. A numerical 

solution with a thousand percent error can result from a stable scheme. 

All that is assured is that if the step size is progressively reduced, 

more accurate solutions would result. The classical method of 

obtaining an error estimate when no theoretical error bound is known 

is to half the step size and compare the results of the two solutions. 

The difference between the two solutions is an estimate of the error 

in the second solution (that with the step size halved). This can 

turn out to be time consuming and expensive in terms of computer costs, 
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especially in a case such as this where both spatial and temporal 

discretization is carried out. Some 2 priori estimate would therefore 

be of great value. 

115. In general, a solution is said to be unstable if errors 

introduced at some state in the computation, e.g., from erroneous 

initial conditions or local truncation or round off errors, are 

propagated without bound throughout subsequent calculations. 

116. Both the finite element scheme used to solve the elliptic 

spatial problem and the implicit finite difference scheme used for the 

transient problem are theoretically unconditionally stable. However, 

it is not necessarily true that an unconditionally stable scheme plus 

an unconditionally stable scheme equals an unconditionally stable 

scheme. 

117. Fortunately, all the test runs made indicate that the 

combination of the two schemes was in fact stable. 

Consistency 

118. The term consistent applied to a certain numerical 

procedure means that the procedure will in fact approximate the 

solution of the differential equation which is to be solved and not 

some other. Both stability and consistency are necessary for 

convergence to the true solution as the step size tends toward zero. 

An example of an inconsistent scheme is the unconditionally stable 

finite difference scheme proposed by DuFort and Frankel to solve the 

heat conduction equation. In fact it solves the equation, 

a~ a2c at a2c -= -_- - 
at ax2 ax at2 (5.20) 

where the last term is a spurious diffusion type term brought about 

by discretizing. Similar inconsistency is produced in the finite 

difference time scheme by the spatial error term in the finite element 

scheme. The factors that affect the magnitude of this numerical 

dispersion term are at, Ax, and 8. The effect on the solution 

depends on the ratio of this numerical dispersion term to the physical 

diffusion coefficient D. 
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Solution to Transient Convection-Diffusion Problem 

119. The Peclet number N is the ratio of convective 
Pe 

transport to diffusive transport. High Peclet numbers suppress the 

diffusion term in equation 5.12 and cause the parabolic equation to 

tend toward the hyperbolic equation. 

ac ac at+uz=o (5.21) 

Parabolic equations are dissipative; i.e., errors at one point in the 

computation are dissipated as the solution proceeds. Hyperbolic 

equations, on the other hand, are nondissipative. The Peclet number 

was found to have great influence on the accuracy of the solution. 

100 c I 1 I r 

NPe = 10 

10-Z L 
lo-‘ 

MAXIMUM ABSOLUTE ERROi'- 

Fig. 5.5. Spatial Convergence 

120. In order to isolate the 

spatial error term from the temporal 

error, a number of runs were made 

for the same time step size, At = 

0.05, with increasing number of 

elements, N = l/Ax. A plot of grid 

spacing vs. I& max 1 is presented in 

Fig. 5.5. For this problem, it is 

seen that the solution is virtually 

unaffected by using more than ten 

elements, i.e., the temporal error 

term dominates after this. 

Subsequent time convergence tests 

were carried out with a twenty 

element grid. 

for At = 0.05 
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121. The first set of temporal convergence tests were performed 

for problems with various Peclet numbers. Figure 5.6 is a log-log plot 

of the number of time steps vs. I& 
max for Peclet numbers of 1, 10, 

and 1000. For N < 10, 

expected when 8 fe0.5. 

second-order convergence is achieved--as 

However, at N 
Pe 

= 1000, the order of 

convergence reduces to - 1. It is believed that there is 

inconsistency produced as the Peclet number is increased. Reducing 

the time step to At = 0.01 improves the accuracy considerably as is 

seen in Fig. 5.7 which is a plot of nondimensional concentration vs. 

nondimensional length for N = 1000. The front has advanced to 
Pe 

x/L = 0.3 in Fig. 5.7, and the sharp gradient at that point is seen to 

cause the numerical solution to oscillate about the exact solution for 

coarse time steps. The gradient for N = 10 is much smaller as 
Pe 

seen in Fig. 5.8, where even for At = 0.1, the error is relatively 

small. 

122. The next set of runs was designed to determine the effect 

of changing the implicitness of the time scheme, i.e., the 8 value. 

When 8 = 0.5, a centered difference scheme results and for 8 = 1.0, 

a fully implicit scheme. Again, a Peclet number of 1000 was used and 

the relatively coarse time interval At = 0.5 was chosen to show the 

form of the error more clearly. The effect of increasing the value of 

8 is seen vividly in Fig. 5.9. The solution seems more stable for 

higher 8 values, but in fact the largest errors for 8 = 0.5 and 

e=l are of similar magnitudes. As 8 is increased, the 

oscillations about the exact solution are dampened; a numerical 

dispersion effect is introduced; and inconsistency develops. At 

8 = 1 the problem that is solved seems to have a lower Peclet number 

than 1000. 

Summary 

123. The prime objective of making convergence tests on the 

problems that have been described in this chapter was to verify the 

accuracy of the formulation and coding. The results indicate that the 
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Fig. 5.6. Influence of Peclet Number on Accuracy 

1.6 1 I I I 

8 = 0.5 
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l At = 0.01 

Fig. 5.7. Effect of Reducing Time Step Size, N 
Pe 

= 1000 
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Fig. 5.8. Effect of Reducing Time Step Size, N = 10 
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Fig. 5.9. Effect of Changing 8 Value, NPe = 1000 
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program solves the governing equation with theoretically anticipated 

convergence rates. 

124. In addition, the following observations have been made: 

a. High Peclet numbers (> about 100) cause a deterioration - 
in accuracy. Smaller time step sizes must be used to 
improve accuracy in such cases. 

b. - The numerical scheme is unconditionally stable in the 
classical sense. 

C. - High 8 values produce smoother solutions due to the 
introduction of numerical dispersion, which means that 
the solution becomes inconsistent. However, these 
smoother solutions are no more accurate than the 
oscillatory solutions produced by 6 = 0.5. 
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PART VI. SIMULATION OF SEDIMENT TRANSPORT IN THE SAVANNAH ESTUARY 

125. Obtaining field or laboratory measurements sufficiently 

detailed and accurate to verify a two-dimensional transport model is 

exceedingly difficult. Dispersion measurements that have been made in 

the past have been made with dyes or were restricted in scope when 

sediment was used. However, field measurements that should provide 

more information for testing the sediment model described in this 

study are now being conducted by the Dredged Material Research Program 

(DMRP). The original version of the sediment model, SEDIMENT I (l), 

was tested with shoal measurements in a laboratory flume. The two 

horizontal dimensions were used in the simulation with a measured 

velocity field. The model predicted shoaling patterns and rates very 

well. However, the spatial variation of suspended sediment 

concentration was negligible in the test, and data which included this 

effect was sought for the verification of SEDIMENT II. 

126. Krone (14) conducted a field study of flocculation as a 

factor in shoaling processes in the Savannah Estuary, Georgia, under 

contract to the Committee on Tidal Hydraulics of the U.S. Army Corps 

of Engineers. Although the measurements in the Savannah are perhaps 

the most complete with respect to satisfying the information required 

to make a simulation, certain assumptions had to be made as described 

later. 

Sediment Transoort in the Savannah Estuarv 

127. The Savannah Estuary is located in Georgia and is a 

typical example of a partially mixed estuary. It has simple geometry 

and most of the shoaling occurs in a well-defined reach. A plan of 

Savannah Harbor presented in Fig. 6.1 shows the portion of the channel 

subject to rapid shoaling and the locations of the three current 

measuring and water sampling stations used in the flocculation study 

(14). 
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Fig. 6.1. Locations of Water Measurement and Shoal Sampling Stations 

128. The material transported in the reach was typically 58% 

clay and the remainder fine silt. There was little variation in the 

composition of the shoal material throughout the test reach. Internal 

shearing, most pronounced during ebb flows, is the principal mechanism 

for aggregating suspended particles in the estuary. The sampling 

stations were located in the mixing zone where fresh water mixes with 

salt water. The partially mixed character of the estuary is evidenced 

by the large salinity gradients measured in the mixing zone which tend 

to stabilize the flow and reduce the turbulent diffusion process. 

129. The shear stress at the bed is higher during flood than 

during ebb flows so that layers of the bed having a higher resistance 

to shear may be suspended during flood. Subsequent ebb flows are not 

able to resuspend all the layers of the bed resulting in a net upstream 

movement of the sediment. A schematic diagram summarizing the various 

processes in the mixing zone is reproduced from Krone (14) in Fig. 6.2. 
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Fig. 6.2. Transport and Shoaling Processes in the Study Area 

Description of Field Measurements 

130. For each of a spring, mean, and neap tidal cycle, vertical 

distributions of suspended sediment, salinity, and currents were 

measured at the three stations: 1) at 109 + 667 ft; 2) at 125 + 500 

ft; and 3) at 130 + 500 ft, as shown in Fig. 6.1. At each vertical 

section measurements were made at seven elevations more or less 

geometrically spaced above the bed - 1, 2, 4, 8, 16, and 25 ft, and 

at the surface. These profiles were obtained at half-hour intervals 

simultaneously at each of the three stations during a complete tidal 

cycle. 

131. The bed material in the test reach was a soft mud and 

shows up as a very faint image on a fathometer trace. Since the 

currents near the bed determine the shear stress there, it is very 

important to locate the bed surface accurately, i.e., the elevation at 

which the flow velocity is zero. A bottom sensor was developed for 

the field study (14) and considerable care was exercised in locating 

the bed. 
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132. Using the steady state vertical concentration equation 

2.5, the average settling velocities at each station for the three 

tides were computed by Krone (14) to be as shown in Table 6.1. 

Table 6.1 

Aggregate Settling Velocities 

Aggregate Settling Velocities, fps 

Station Spring Tide Mean Tide Neap Tide 

109+667 
Ebb 0.028 0.038 0.030 
Flood 0.033 -- 0.012 

125+500 
Ebb 0.014,0.013 0.091 0.084 
Flood 0.033 0.017 0.047 

130+500 
Ebb 0.151 -- 0.016 
Flood 0.098 -- 0.040 

Required Input for Transport Model 

133. The information required as input to the model is listed 

below: 

a. - 

b. - 

C. 

Ti. - 

e. - 

f. - 

4. 

The geometry of the domain, which in this case is 
bounded by the bed, the free surface, and the sections 
at stations 1 and 3. 
The velocity components u and v at each node point 
for each time step. 
The initial concentration at each node point. 
The node point concentrations at stations 1 and 3 for 
each time step. (These are the concentration boundary 
conditions.) 
The effective turbulent diffusion coefficients D, 
and Dy. 
The average settling velocity V, (t, element #) for 
each element. 
The initial bed profile and properties for the bottom 
elements, i.e., the number of layers, layer thickness, 
density of each layer, and critical shear stress of 
each layer. 
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h. The critical shear stress for deposition. 
Y 1. Consolidation characteristics of the bed - as materia - 

is deposited on the bed, it is crushed by the over- 
burden and becomes denser and. more resistant to 
erosion. A table of the number of different layers 
with thickness, bulk density, and critical shear 
strength for each layer must be provided for the 
dynamic simulation. 

134. Items a, c, and. d of the above list had been measured. 

The transient velocity field was generated using a finite element flow 

model as described in Appendix B. The flow model used the same grid 

as the transport model so that the velocities at the node points 

required in item b were produced. The grid was generated by using the 

automatic grid. generator described in Appendix C. This grid generator 

saves considerable time and effort in the preparation of input data 

and permits a preview of the grid. The bed shear stress at each 

bottom node was computed by assuming a logarithmic velocity profile 

near the bed. The computation of the shear stress by passing a 

parabola through the bottom three points and differentiating to obtain 

the velocity profile does not yield very good results since numerical 

solutions do not match the derivative very well, especially near the 

boundaries. 

135. A contour plotting routine that is especially suited for 

finite element networks was developed to provide graphical output 

(see Appendix D). This routine proved invaluable in obtaining a 

graphical view of the thousands of simulated values. 

Diffusion coefficients 

136. The solution stability analysis in Part V has shown that 

small diffusion coefficients, i.e., large Peclet numbers, produce 

large oscillations in the solution. The longitudinal diffusion 

coefficient Dx would not be expected to affect the solution 

significantly as long as it is not so small as to cause the 

oscillations in the numerical solution or so large as to suppress the 

convective effects. Contrary to the belief of some researchers, the 

vertical diffusion coefficient, especially near the bed, is solution 

determining. 
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137. A value of D 
X 

= 0.5 m2/sec as observed in the Gironde 

estuary, France, by Sauzay and Allen (27) was used for all runs. The 

initial values of the vertical diffusion coefficient D used were 
Y 

those computed on a tidally averaged basis for the Savannah by Tesche 

(29) (see Table 6.2). 

Table 6.2 

Average Values of Vertical Eddy Diffusivity Used for 

Spring Tide Simulation 

Elevation above Bed Surface Vertical Eddy Diffusivity 

Feet Metres 
2 

Dv, m /set 

o-1 0.0 - 0.3048 0.0006 

l-2 0.3048 - 0.6096 0.001 

2-4 0.6096 - 1.2192 0.002 

4-8 1.2192 - 2.4384 0.004 

8 - 16 2.4384 - 4.8768 0.006 

16 - 25 4.8768 - 7.6200 0.004 

25 - Surface 7.6200 - Surface 0.003 

138. A number of runs were made to calibrate the vertical 

diffusion coefficients keeping the other parameters constant. The 

solution was calibrated for two hours using the measured values at 

mid-station. However, the number of degrees of freedom with the 

limited time and budget did not permit more than a coarse calibration. 

Assumed sediment and bed properties 

139. No measurements were made on any of the sediment or bed 

properties as part of the Savannah field measurement program. Past 

measurements on similar sediments were therefore used. 

140. The critical shear stress for deposition was assumed to 

be 0.02 N/m2 (0.2 dynes/cm2). A constant settling velocity of 0.005 

m/set was used for the entire tidal cycle. The simulation was begun 

at the peak of flood when the bed was assumed to have been scoured to 
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a firm bottom. The initial bed profile, therefore, had zero thickness. 

141. The bed layer properties used are given in Table 6.3. The 

thickness of each bed layer is automatically computed from the bulk 

density of the sediment using a specified dry weight per square meter 

in each layer. The value chosen corresponded to a thickness of about 

.025 m (1 inch) per layer. The properties for the sediment were 

obtained from the extensive laboratory and field measurements made by 

Krone (12,14). 

Table 6.3 

Bed Layer Properties 

Layer 

1 

2 

3 

4 

5 

6 

7 

Bulk Density Shear Strength 

kg/m3 N/m2 

107.9 .02 

108.7 -04 

109.8 -08 

111.3 .14 

113.7 -14 

117.9 -39 

126.9 2.2 

142. Once the top six layers are filled, further deposition 

results in the excess being transferred to the seventh layer, which 

has no restriction on thickness. 

Simulation Results 

143. The measured and simulated concentration profiles at 

mid-station were compared to determine the accuracy of the simulation. 

Figure 6.3 is a series of half-hourly space plots of the logarithm of 

suspended sediment concentration vs. elevation above the bed, and 

Fig. 6.4 shows the temporal var ,iation of suspended sol .ids at mid- 
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Fig. 6.4. Suspended Sediment Concentrations at Station 
125+500, Spring Tide 
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station. 

144. Considering the fact that constant values for settling 

velocity and diffusion coefficients were used throughout the tidal 

cycle - due to the lack of a better description in this case, the 

simulated values of suspended sediment concentrations compare very well 

with the measurements. When the flow velocities are high, both the 

concentration and the concentration gradient near the bed are also 

high. Under these circumstances, measurements of sediment 

concentrations are prone to the greatest error and it is seen that the 

simulated values deviate from those measured near the bed at these 

very times. 

145. The simulated values generally yield a higher concentration 

of sediment near the bed than those measured in the field. This was 

observed in all the simulations using realistic parametric values. It 

seems that a fluid mud layer which is mobilized at high current 

intensities exists on the bottom. It is possible that the bottom 

sensor did not penetrate this thick mud layer to the actual depth of 

zero velocity; at these depths even a few centimeters error in 

locating the bottom would cause a significant difference in the 

concentration measured due to the very high concentration gradient. 

An analysis of the measured velocities and concentrations showed that 

mass was not being conserved in the test reach, especially during high 

flows. Lateral variations in velocity and concentration and 

inaccurate location of the bed can account for this error. 

146. In an estuary such as the Savannah the sediment settling 

velocities and the vertical diffusion coefficient are the two 

parameters that have the greatest effect on the solution. If the 

response of the model to variations in these parameters was known 

precisely, it would have made the calibration task much simpler. 

Since the grid size and time step also have a significant effect on 

the solution a systematic sensitivity analysis needs to be conducted 

to obtain model response to the parameters involved. 

147. As indicated by Krone (14), the settling velocity of the 

sediments during ebb are lower than that at flood. If smaller 
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settling velocities were used during ebb a better comparison may have 

resulted. 

148. The transient bed profile that was simulated is shown in 

Fig. 6.5. Net upstream excursion of the shoal is seen. The filling 

up of the depression produced by the dredged area is shown vividly. 

It is reported that maximum intra-tidal cycle shoal depths are about 

3-4 feet in that region, which compares very well with the 1 meter or 

so of deposit that is predicted. It is interesting to note that there 

is little deposition in the depression during flood and that it is the 

ebb flow which fills the dredged area with sediment. The saline wedge 

which moves along the bottom during flood has far greater ability to 

scour the bed than the ebb flows which ride over the salt water below. 
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LENGTII ALONG CENTERLINE OF ESTUARY 

Fig. 6.5. Simulated Average Shoal Thickness, Spring Tide 
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Fig. 6.5 (Concluded) 
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PART VII. CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

General 

149. Perhaps the most complex situation to model is a 

stratified, highly turbulent estuary in which continuing aggregation 

causes rapid change of sediment properties and the nonlogarithmic 

velocity profiles make the computation of bed shear stress difficult. 

The Savannah is such an estuary. This problem was chosen for a first 

full-scale model test only because there does not exist any other data 

as complete as the information available from the Savannah measure- 

ments. Although many important parameters had to be estimated from 

previous experience, the model showed the essential trends exceedingly 

well. Better transient concentrations could be obtained by varying 

the transport parameters systematically. Some field measurement of 

sediment and bed properties would have reduced the number of variables, 

thereby reducing the number of trial runs necessary to calibrate the 

other model parameters. This experience showed the central importance 

of the vertical diffusion coefficient and of the settling velocities 

of suspended aggregates. 

150. The horizontal problem, i.e., depth averaged (x, z 

dimensions), is an order of magnitude less difficult than the vertical 

problem due to the generally lower concentration gradients and simpler 

boundary conditions. Relatively shallow extensive estuaries, lakes, 

reservoirs, and settling ponds fall in this category. Settling 

velocity and diffusion coefficients have a much smaller effect on 

these horizontal problems and the model can be applied with minimal 

parametric information to these situations. 

Specific 

a. The two-dimensional finite element model developed and - 
tested under this study predicts suspended sediment 
concentrations and bed profile in a transient flow 
field. 
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b. - The model is applicable to any problem that can be 
averaged in one of the spatial dimensions and in which 
a median settling velocity suffices to describe the 
settling of the suspended phase. 

C. The numerical scheme used is stable for all conditions. - 
However, the accuracy of the solution depends on the 
Peclet Number (Npe), the fineness of the grid, and the 
time step size. 

d. - The simulation of sediment transport in the Savannah 
estuary is an illustration of the potential 
applicability of the model. The measured and computed 
values of sediment concentration are in good agreement 
except near the bed at high flows. It is possible that 
there were errors in sensing the bottom while the 
measurements were made. 

e. - The model can be applied to a whole class of problems 
called scalar transport problems, i.e., the constituent 
that is being modeled can be any scalar quantity such 
as temperature, chemical in solution, or algae. The 
model can be modified easily to apply to more than one 
constituent including sediment particles of various 
settling velocities. 

Recommendations 

151. A mathematical model such as that developed in this study 

is a tool whose utility value is enhanced by repeated use. The model 

is based on sound theory but the parameters to be used must be 

measured or chosen with knowledge that is gained by experience with 

the physical processes and workings of the model. A systematic 

sensitivity analysis will provide a basis for selecting the proper 

grid, time step size, and other physical parameters. Such an analysis 

will also result in quantifying model response to a particular 

parameter - the user will know what percent error to expect in the 

solution for a given deviation of a particular parameter. 

152. Well planned field measurement programs under diverse 

conditions are necessary for comparison with model simulations so that 

the model can be improved continually. 
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APPENDIX A: FINITE ELEMENT DERIVATIONS 

The element coefficient and load matrices are derived in this 

section together with the line integrations for the flux boundary 

conditions and mass deposited. 

The Element and Shape Functions 

Quadrilateral elements with any or all sides being curved can be 

used. Each element is defined by eight node points numbered counter- 

clockwise as in Fig. A-1. 

E;= 
8 

-1 
4 
<=l 

Fig. A.l. Element With Local Coordinate System 

Both the approximations for the concentration and geometry of 

the element are quadratic, hence, the element is called isoparametric. 

Geometric transformation to local coordinates (5, n) would be exact 

for linear and parabolic sides. The shape function N 
K 

must be unity 

at node point K and zero at every other node point. 

There are then eight shape functions, N i (i = 1, 8), given in 

terms of the local variables 5, n and the node point coordinates 

sir Qi as in Table A.l. The coordinates 5 
i 

and r\ i take the 

values -1 and 1. 
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Table A.1 

Quadratic Shape Functions 

Node Number Shape Function 

CORNER NODES 
1, 3, 5, 7 N 

i = (1 + Ei) (1 + m-y mi + T-lr$ - 1)/4 

MIDSIDE NODES 
2, 6, 5 i = 0 N i = (1 - E2) (1 + wlp2 

MIDSIDE NODES 
4, 8, rj 

i 
= 0 N 

i 
= (1 - q2) (1 + 5Si)/2 

The approximation g to the concentration within each element 

is written in terms of the shape functions and node point 

concentrations as: 

;=NC 
ii 

(i = 1, 8) A.1 

In the Galerkin formulation of the governing equation, the 
A 

derivatives C with respect to the global variables x and z 

appear. These need to be transformed to the local unknown 5 and q. 

The coordinate transformation from the global coordinate system 

lx, z) to the local (5, n) system is effected by using the same 

quadratic shape functions N.. Uniqueness and continuity of mapping 
1 

are discussed in Zienkiewicz*. 

* Zienkiewicz, 0. G., The Finite Element Method in Engineering 
Science, McGraw-Hill, 1971. 
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Derivatives of Functions 

The coordinates of any point (x, z) are 

x=N x ii 

z=N z ii (i = 1, 8) A.2 

where (x., z.) are the node point coordinates in the global coordinate 
1 I. 

system. 

By the chain rule of partial differentiation, 

-.- 

or 

ax 
at 

= 1 ax 
arl 

aZ 
ag 

az 
arl 

1 

Jacobian 1. Jl 

Then 

aN. 
$= IJI 

aN. 
+ IJI 

A.3 

A.4 

A.5 

A.6 

A.7 
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The derivatives of the shape functions with respect to 5 and 

n are tabulated below. 

Table A.2 

Derivatives of Shape Functions 

Differential 
Node Number with respect to Derivative 

CORNER NODES 
1, 3, 5, 7 E; LN.1 

'i 
15 

= 4 (1 + rlrli) C2Ei + m-Ii) 

MID-SIDE NODES 
2, 6, Ei = 0 

MID-SIDE NODES 
4, 8, r\ 

i 
= 0 

CORNER NODES 
1, 3, 5, 7 

MID-SIDE NODES 
2, 6 

5 

5 

rl 

[Nil< = - 5 (1 + m-q 

[Nil E 
'i = j- (1 - n2) 

[Nil r7 
'li 

= 4 (1 + EEi) (3-m. + SSi, 1 

[Niln 
'i = 2 (1 - c2, 

MID-SIDE NODES 
4, 8 rl [Nil,, = - rl (1 + 55.) 1 

Also, 

[xl E = iNilE x. ; Lx+, = [Nilrl x. 1 1 

[zl E = [NilS z, ; 1 blQ = [Ni+, z. 1 
A.8 
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Coefficient Matrices 

Gaussian quadrature is used to form the element coefficient 

matrix. This requires the evaluation of the integrand in equation 

4.19 at each quadrature point, which in turn requires the evaluation 

of the following quantities at that point (5, n). The approximate 
A P. 

point velocities u and w  are given by 

A 

u=N u (a = 1, 8) A.9 
a a 

The set 

and 

* 
w=N w  

a a 
(a = 1, 8) 

[xl 5 = [Na] 5 xa etc. (a = 1, 8) A.11 

IJI = blE [zlrl - [xl, [zls 

Then 

aN. 

7t [Njlx= I 
ax 1 

[z], PJjlS - Iz15 [Njlrl 
t/ 

IJ 

aN. 
2 = [NjlZ = ax [xl E [Nj In - [x$, [N. 1 

7 

(j = 1, 8) 

5 I/ IJI 

A.10 

A.12 

A.13 

A.14 

From equations 4.19 and 4.20, the element coefficient matrix 

[K] times the array of node point concentrations {C) is given by 
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[Kl (Cl = 

ne 

aN. 
+LDzg 

aZ 
3 

dxdz 

Now 

Jdxdz = J+ IJI d@n 

Then the (i, j) term of the element coefficient matrix is 

Kij = B pi { (Na Ua) [Nj] x + (Na Wa) [Nj 

ne 

1 -C5N 
Z 1 j I 

A.15 

A.16 

+ Dx LN.1 IN.1 
1X 7 x 

+ DZ fN.1 1 z IJI dtdrl 

(((a = 1, 81, j = 1, 81, i = 1, 8) A.17 

where [Nl = aN/ax, etc. 
X 

The coefficient array [Tl of the time rate of change of the node 
aCj 

point concentrations - 
at 

is given by 

T = 
ij N. N. IJI a@rl 

1 7 
D 

ne 

(((a = 1, 8) j = 1, 8) i = 1, 8) A.18 

The load matrix 
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{F) = T - h-1 b2} dxdy + ENIT iqs) dR A.19 

D 
ne 

where !?, = boundary of element, and {q') is the flux source term. 

The first term of F 

II [NT] {a,} dxdy = Ni Nj a2 1 JI dWrl A.20 

D D ne ne 

The integration of the second term is described in the next 

section. 

Each term in the relationships for the various arrays is 

integrated numerically using the Gauss-LegendreP scheme, i.e., 

11 

f(E, rl) dEdn = HmHk f(i,r '1,) A.21 

-1-l m=l k=l 

for n quadrature points where H represents the weight coefficients. 

Contour Integral of Flux 

Where the flux qs is specified at a boundary such as the bed 

the quantity 

I [NIT {q') dR 

R 

needs to be evaluated. 

Considering one side of an element at a time, the quadratic 

shape functions M can be written in terms of the local contour 

coordinate s as, 
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M1 
= s (s - 1)/Z 

M2 = (s + 1) (1 - s) A.22 

M3 
= s (s + 1)/2 

where -1 < s < 1. - - 
Then the approximation to the flux 

;=M q ii 
i=l,3 A.23 

where q. represents the node point values of the flux for the three 1 
nodes that are on the side of the element being integrated. Now 

d!? = 

and 

dx = ds 

dy = 

The two dimensional shape functions N evaluated on the 

element boundary are identical to M. 

Therefore, 

1 

[NT] {q') dR = Mi (Mj qj) A ds 

A.24 

A.25 

A.26 

((j = 1, 31, i = 1, 3) 

where 
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d”a dM 
A= P 

ds*a+ds yB 
B-27 

a, B = 1,3 

Gauss-Legendre' quadrature is used to evaluate the fluxes along 

the boundaries. 

Computation of Net Mass Flux to the Bed 

The net mass D deposited per unit width of bed is given by 
m 

L At 

D vS =- 
m T cd II 17cd - T,) cb dtdR 

0 0 

A.28 

where the integrand is zero if Tb > -rcdi L = length of the element 

boundary with the bed; Vs = settling velocity of sediment; T b = shear 

stress at the bed; and 'b = concentration of suspended sediment near 

the bed. 

If the shear stress and concentration at the bed are assumed to 

vary linearly with time, 

L 

vs lz D =- 
m 

5 / i 
(3Tcd - 2-i; - T;+l) c; + 

0 

(3Tcd - T; - 2T;+‘) Cn+’ &?, A.29 

where n 
'b 

is the bed shear at time step n, etc. 

Assuming a quadratic variation of shear and concentration along 

the boundary, 
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I; b = Mi hbji 

; b = Mi (Cbli A.30 

i=l,3 

The integrand in equation A.29 is evaluated as described in 

previous section to compute the net mass flux to the bed due to 

deposition, in time At. 
When 'b > 'ce 

(critical shear stress for erosion), any material 

on the bed will be eroded as described in Part IV of the main text. 
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APPENDIX B: FLOW SIMULATION 

The velocities and salinity calculations were made by application 

of an existing finite element hydrodynamic model (independent of the 

effects of suspended sediment) and used the observations at stations 

109 + 667 and 130 + 500 as upstream and downstream boundary conditions, 

respectively. The output from the hydrodynamics model was used as 

input to the sediment model for the purposes 

validation. 

of model calibration and 

Technical Approach 

The velocity and salinity modeling was done with a modified 

version of an existing finite element hydrodynamics model*. This 

model provides a continuous two-dimensional description of velocities 

and salinities in the vertical, X-Z plane. The model allows for a 

free surface (zero pressure) condition at the air-water interface and 

surface tractions at the mud-water interface, The equations used in 

this study are two-dimensional versions of the turbulent analogies to 

the three-dimensional Navier-Stokes Momentum Equations, the continuity 

equation and the convection-diffusion equation. 

If the flow is assumed to be incompressible and if the surface 

conditions are ignored, the governing differential equations may be 

written as: 

* King, Ian P., William R. Norton, and Gerald T. Orlob, A Finite 
Element Solution for Two-Dimensional Density Stratified Flow, 
U.S. Department of the Interior, Office of Water Resources Research, 
April 1973, 80 p. 

Norton, William R., Ian P. King and Gerald T. Orlob, A Finite 
Element Model for Lower Granite Reservoir, Walla Walla District, 
U.S. Army Corps of Engineers, Walla Walla, Washington, March 1973, 
138 p. 

Finite Elements in Fluids, Vol. 1, "Viscous Flow and Hydrodynamics" 
Ed. R. H. Gallagher, J. T. Oden, C. Taylor, and 0. C. Zienkiewicz, 
John Wiley & Sons, Ltd., 1975, 279 p. 

B-l 



Momentum equations 

au aw 
aP (at+"z+"aZ *)+&(PaJ - apg - E a(aE) zx ax 

- E a( a2 zz a, 
aaw)=o 

Continuity equation 

&(auJ+k(aw)=O 

(J3.2) 

(B.3) 

Convection-diffusion 
equation for density 

32 
at +a(U*+W*)-D ax aZ x$(a~)-DZ&Ca$)=o (B.4) 

where 

u,w = velocity components in X and Z directions 

P = fluid density 

P = fluid pressure 

E rE rE rE = 
xx xz zx zz 

turbulent exchange coefficients 

Dx,D = turbulent diffusion coefficients 
Z 

a = lateral width 

In accordance with conventional fluid mechanics the extension 

of these essentially laminar equations has been achieved by replacing 

the molecular viscosity and diffusion coefficients by their turbulent 

counterparts. These coefficients are, of course, dependent upon the 
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flow regime and their values were determined by a trial and error 

process from the observed data for the neap tide. 

Using the techniques of the finite element method, the above 

equations have been coded for solution by a digital computer. The 

resulting computer model incorporates both triangular and quadri- 

lateral isoparametric elements, with velocities allowed to vary 

quadratically and the pressures linearly. 

The model has been developed in FORTRAN-IV programming code on 

the UNIVAC 1108 computer with 65,000 words of storage. A version of 

the model has been used on the CDC 7600 for a very large problem with 

about 150,000 words of storage. An in-core equation solver has been 

used throughout to reduce run times on the iterations required at each 

time step. The equations are unsymmetrical, and this approximately 

doubles computer storage requirements and quadruples solution time 

over similar problems with symmetrical equations. The solution 

routine uses a dynamically allocated storage algorithm with a pseudo- 

rectangular form in which the diagonal term is located to minimize the 

storage actually used. One other feature of the model allows the user 

to, at his option, control the order of the solution process. For 

dynamic problems the solution is integrated in time with a two-point, 

finite difference scheme. The output from the model consists of 

tabular values of velocity (u and w), pressure, density, salinity, 

and location of the water surface at all network node points at each 

point in time. 

Model Application 

Introduction 

The flow simulations were completed by a straightforward 

application of the existing hydrodynamics model. The only change made 

to the model was a slight modification in the eddy viscosity terms of 

the momentum equations to allow the diagonal and off-diagonal terms 

(e-g., EXXIEXZ ) to assume independent values. This change resulted in 

the calculation of improved velocity profiles at all locations in the 

B-3 



estuary, and is consistent with the mixing length approach to eddy 

viscosity. 

Successful application of the flow model requires that a number 

of semi-independent, but interrelated, items be considered. Chief 

among these are the physical description of the system, its overall 

water balance, definition of proper boundary conditions, and reasonable 

estimates of the eddy viscosity and eddy diffusion coefficients. A 

summary of the methods and techniques used for each item is presented 

below, together with representative comparisons of the output produced 

by the computer program and corresponding field measurements. The 

conditions and data associated with the spring tide are used 

exclusively for discussion purposes; observations for the neap and 

mean tides are similar in content and generally show behavior parallel 

to the spring values. 

Physical description 
of the Savannah Estuary 

In all cases, existing Corps data* were used to estimate the 

physical configuration of the Savannah Estuary. Figure B.l shows a 

plan view of the general area, with the velocity and salinity sampling 

stations denoted as small circles (numbers 1, 2, and 3). The region 

of interest was estimated to be 20,833 feet long and to have a 

rectangular cross section with a width of 650 feet. 

The estimate of top width was made from aerial photographs; for 

reference purposes, cross sections (approximate) from field soundings 

at the three sampling locations are shown in Fig. B-2. The cross 

section at station 125 + 500 is not representative of the overall 

system as it is located at a turning basin. 

* Krone, R. B., "A Field Study of Flocculation as a Factor in 
Estuarial Shoaling Processes," Tech. Bull. No. 19, Corps of 
Engineers, U.S. Army, June 1972, 62 p. plus Appendices. 

Krone, R. B., "A Field Study of Flocculation as a Factor in 
Estuarial Shoaling Processes, Appendix D: Velocities, Salinities, 
and Suspended Solids from Field Measurements and Samples," Tech. 
Bull. No. 19, Corps of Engineers, U.S. Army, June 1972, 61 p. 
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LEGEND 

LOCATION OF DETAILED WATER MEASUREMENT 

0 STATION ,D9+687 

0 STATION 125+500 

0 STATION 130+500 

SHOAL SAUPLlNC LOCAT,ONS 

q STATION 122+00 
m STATION 125tDD 

SCALE IN FEET 

Fig. B-1. Locations of Water Measurement and Shoal Sampling Stations 

Defining the elevation of the estuary's bottom presented a 

difficult problem. The constant deposition and scour which takes 

place moves the effective bottom up and down during a tidal cycle, 

perhaps as much as 4 feet. At the outset of the modeling work, this 

fact was recognized, but its influence was not expected to be large, 

and modifying the hydrodynamics model to accept a movable bottom was 

beyond the scope of the project. With this in mind, and using a 

sounding chart constructed from approximately eight field surveys 

spanning the summer of 1968, a bottom profile was estimated which 

ranged in elevation from a low of -40 feet at station 127 + 000 to a 

high of -32.5 at station 115 + 500. For reasons explained in the 

discussion, this configuration proved unsatisfactory and a revised 

estimate of bottom position was adopted. For all simulations reported 

herein the bottom elevation was set at a constant value of -35.0 feet. 

The finite element network used to represent the final 

configuration is graphically depicted in Fig. B-3. This network was 

comprised of 49 quadrilateral elements with 176 node points. As can 
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Fig. B.2. Midtide Cross Sections at the Sampling Stations 
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be seen in the figure, the network has relatively more detail near the 

bottom than near the free water surface. This construction is 

motivated by a desire to have a detailed description of the velocity 

profiles near the bed in order that shear stresses can be computed 

accurately for sediment calculation. 

The network show-n in Fig. B.3 indicates the upper boundary (free 

water surface) at elevation zero. During the simulations this 

boundary was allowed to move in accordance with the tidal behavior to 

maintain the zero surface pressure boundary condition; all other 

points in the system maintained their geometrical position during the 

simulations. 

Water balance 

Data observed in the Savannah Estuary included current speed, 

current direction, and water surface position. With a knowledge of 

the cross section and top width it is possible to calculate a water 

balance over time. From a modeling point of view, it is important 

that overall system continuity be maintained in the specification of 

boundary conditions or an inconsistent problem solution will result. 

The water balance for the Savannah Estuary was calculated as 

follows. First, the geometric description outlined above was assumed 

to hold. Next, the observed elevation of the water surface (supplied 

by the Corps) was taken to be accurate. The difference in observed 

tidal elevations at the upper and lower ends of the estuary was very 

small; the water surface over the test section could therefore be 

treated as a horizontal plane. 

The observed velocity profiles and storage changes were then 

integrated in time and space to compute the system water balance; 

the results of this exercise are summarized in Table B.l. Columns 

3, 4, and 5 are the estimated flows at stations 1, 2, and 3 based 

on a vertical integration of the current speed and direction ob- 

servations. Columns 6 and 7 show the net inflow/outflow in the 

estuary, first between stations 109 + 667 and 130 + 500 and then 

between stations 125 + 500 and 130 + 500. The final two columns 

indicate the rate of change of volume between stations 109 + 667 
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Table B-1 

Net Flows and Bate of Change of Volume Between Stations 109+667 

and 130+500 in the Savannah Estuary, Sept. 24-25, 1968 

1530 1.70 57364 -- 644 56720 -644 
1600 0.90 53690 45403 48380 5309 -2977 
1630 0.40 46941 30647 31495 15446 -848 
1700 0.55 33948 13611 3779 30169 9832 
1730 1.55 5121 -9601 -5583 10707 -4018 

-1444 
-1443 

-903 
271 

1806 

1800 1.70 -23516 -25365 -151 -23365 -25213 1138 271 
1830 4.15 -48079 -40527 -- -48079 -40527 18579 4424 
1900 5.30 -60679 -47391 -72183 11503 24792 8721 2076 
1930 6.60 -65448 -40864 -67753 2106 26889 9858 2347 
2000 7.60 -73092 -44471 -63794 -9298 19323 7583 1805 

2030 8.30 -74175 -37249 -57077 -17097 19828 5308 1264 
2100 8.75 -61963 -52519 -52273 -9690 -246 3413 812 
2130 9.00 -45186 -37313 -44395 -791 7082 1896 451 
2200 9.05 -46547 -31085 -35319 -11227 4235 379 90 
2230 8.95 -28806 -22036 -19560 -9246 -2476 -758 -181 

2300 8.70 -6166 -3762 1309 -7475 -5071 -1896 -451 
2330 8.20 23208 14708 24936 -1727 -10228 -3791 -902 
2400 7.45 47527 41068 48683 -156 -7614 -5688 -1354 
0030 6.70 72330 60982 75066 -2735 -14084 -5688 -1354 
0100 5.80 77840 82181 87848 -10007 -5667 -6825 -1625 

0130 4.70 75576 78814 86455 -10878 -7641 -8342 -1986 
0200 3.75 64292 75509 80307 -16015 -4798 -7204 -1715 
0230 2.90 65017 65679 70248 -5231 -4569 -6446 -1535 
0300 2.00 61712 54386 72055 -10342 -17668 -6825 -1625 
0330 1.25 52781 50645 60178 -7397 -9533 -5688 -1354 

0400 0.65 50442 36933 50934 -491 -14000 -4550 -1083 
0430 0.30 37053 27389 35094 1959 -7705 -2654 -632 
0500 0.45 21022 10992 12529 8493 -1536 1138 271 
0530 1.00 -842 -7964 -10088 9246 2124 4170 993 

*Beginning Sept. 24, 1968 
**Ebb is positive 
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and 130 + 500 as calculated from the change of water surface. 

If there was absolute consistency between the velocity (net flow) 

and water surface observations, a simple water balance could be written 

as 

QI 
Av 

-Q,=,, (B-5) 

where 

QI = the observed inflow to the test reach, cfs 

Q. = the observed outflow from the test reach, cfs 

Av - = the observed rate of volume change in the reach, cfs At 

In order to prepare a consistent water balance, it was assumed 

that the rate of change of volume within the test section was a 

relatively accurate calculation, and that any inconsistencies could be 

attributed to velocity measurements. Also, the observations at 

station 130 + 500 were judged to have the highest likelihood of 

consistency of the three velocity measurements. Under these 

assumptions, equation B.5 was modified to the form 

RQI 
Av 

- Q, = jyg (B.6) 

or 

Av R=(nt+Qo)/QI (B-7) 

where 

R = a correction factor to be applied to the observed 

velocities at stations 109 + 667 and 125 + 500 to achieve 

an exact system water balance. If all the observations are 

consistent R = 1.0 

Equation B.7 was solved for each time step; the results from 

the spring tide are presented in Table B-2. In general these values 
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Table B.2 

Velocity Correction Factors for an Exact Water Balance, 

Savannah Estuary, Sept. 24-25, 1968 

Time Correction Factor Correction Factor 
Hours R @ Station 109 + 667 R @ Station 125 + 500 

1530 -0.09 -- 

1600 0.79 1.03 
1630 0.59 1.00 
1700 0.14 0.30 
1730 0.39 0.39 

1800 -0.04 -0.01 
1830 -0.39 -0.11 
1900 1.05 1.48 
1930 0.88 1.60 
2000 0.77 1.39 

2030 0.70 1.50 
2100 0.79 0.98 
2130 0.94 1.18 
2200 0.75 1.13 
2230 0.71 0.90 

2300 0.10 -0.23 
2330 0.91 1.63 
2400 0.89 1.15 
0030 0.96 1.21 
0100 1.04 1.05 

0130 1.03 1.07 
0200 1.14 1.04 
0230 0.98 1.05 
0300 1.06 1.29 
0330 1.03 1.16 

0400 0.92 1.35 
0430 0.88 1.26 
0500 0.65 1.16 
0530 7.03 1.14 

are about what would be expected from this type of calculation, with 

the majority of the observed flow profiles meeting continuity within 

?I 15%. The largest percentage errors can also be seen to occur at 

times of low velocity, a period at which the time to make the 

observations and relatively large turbulent eddies may influence the 
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results. In the discussions which follow, the correction factor R 

has been applied to observed velocities for the sake of consistency. 

Model calibration 

The momentum and convection-diffusion equations for the hydro- 

dynamic model contain certain semiempirical coefficients called eddy 
viscosity and eddy diffusion coefficients. Proper model operation is 

contingent on reasonable estimates of these values, and a substantial 

amount of this work was devoted to a definition of these values. A 

number of spatial and temporal schemes were proposed and evaluated 

with the data from the neap tide. Several different forms of the 

turbulence analogy were attempted and their behavior compared to field 

observations. None of the proposed schemes were found to provide 

consistently better or more accurate results than simple eddy viscosity 

relationships indicated in equations B.l and B.2, and constant values 

were adopted for all computer runs. It should be pointed out that at 

most times in the Savannah Estuary the flow field is dominated by 

inertial effects; therefore, the model's output is somewhat 

insensitive to the eddy viscosity values. 

The values selected were: 

E 
xx = 5 x 103 lb-sec/ft2 at all locations 

E =& =1x10 -4 lb-sec/ft2 at all locations xz zx 
& = 5 x lo2 lb-sec/ft2 at all locations zz 

D 
X 

= 5 x lo2 ft2/sec at all locations 

D = 1 x lo1 ft2/sec from elevations -35.0 to -30.0 and 
Y 

5 x 10 -4 ft2/sec elsewhere 

Model results 

The model was operated on the Savannah Estuary for the periods 

indicated. Time steps of 30 minutes were specified, and the complete 

dynamic behavior of the system calculated at each node point at each 

time step. The output from the model consisted of velocities, 

pressures, densities, and salinities; this data was punched into cards 

for subsequent use by the sediment model. 
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As an indication of the shape and magnitude of simulated and 

observed velocity profiles, Fig. B.4 presents model/prototype 

comparisons at four times spanning a period of tidal reversal. Each 

of the plots represents the behavior at station 125 + 500, with the 

solid line indicating the simulated values and the plotted points 

the observed values. 

Discussion 

The modeling results produced in the course of this work are 

in reasonable agreement with the limited field observations and are 

thought to be adequate for input to the sediment model. The major 

problem encountered in this effort, and one which was never really 

resolved, was the proper location of the movable bottom. As was 

pointed out earlier, the first network constructed for the estuary was 

configured with a depression in the area of station 125 + 500. The 

results produced by the model with this network were judged quite 

satisfactory when compared to field observations at all points except 

very near the bed, where lower than observed velocities were 

calculated. No amount of coefficient adjustment, within the range of 

reasonable values, could rectify this situation, and flow simply 

passed over the bottom depression. 

Not surprisingly, as the bottom depression was removed by 

network adjustment, the velocities near the bed increased. It soon 

became evident that near-bed flows were highly influenced by the 

location of the bottom, while velocities higher in the water column 

were relatively unaffected. Primarily due to the lack of more 

precise data, it was finally decided to perform the simulations with 

a flat bed at a fixed, average elevation. The results from such an 

approach are shown in Fig. B-4, and display the expected 

characteristics--higher than observed near-bed velocities. 

The ultimate solution to this problem is conceptually simple, 

but technically difficult; the sediment and hydrodynamic solutions 

should be coupled for simultaneous solution. The preparation of such 
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a model awaits further development, with the approach demonstrated by 

this project representing a workable alternative until that final step 

is taken. 
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APPENDIX C: FINITE ELEMENT GRID GENERATOR 

Theory 

The underlying theory for the grid generator is discussed 

below. 

Generalized eauations 

Consider a typical nonrectangular grid shown in Fig. C.l. 

Location of an interior node i can be computed in terms of its 

neighboring nodes (n., n 
I k' %' 

1 x. = 1 Ni (2-w) c 
n=l 

1 
Yi = Ni (2-w) c 

n=l 

. . . ) by the following equations: 

(x +x -wx ) (C-1) n. 
7 % nk 

O<w<l - - 

i=l+I 

(Yn 
j 

+ Y, 
R 

- w  Yn ) 
k 

((2.2) 

where N 
i denotes the number of elements containing node i. The 

value of the weighting coefficient w  determines the type of 

generation scheme employed. If w  = 1, the equations above will yield 

an isoparametric generation scheme. Setting w  = 0 produces a 

Laplacian scheme. Values of w  between 0 and 1 will result in a 

mixed generating scheme which is biased towards either an isoparametric 

or Laplacian method depending on the exact value of w. Coordinate 

computation for the i-th node is usually done by iteration. An 

iterative method of the Gauss-Seidel type was employed in this 

program because of desirable convergence characteristics. For the 

application to nonrectangular type grids the coding is slightly more 

complex for the Gauss-Seidel scheme, but the storage requirements and 

the execution time per iteration cycle are essentially the same. For 

C-l 



PORTION OF A NON -RECTANGULAR GRID 

i 

\ 

“I’ 

n 

“j nk 

DETAILED VIEW OF ELEMENT "n" 

Fig. C.l. Neighborhood of Node "i" Non-Rectangular Grid 

c-2 



a particular example (shown later as Fig. C-6) a comparison of the 

number of iterations required for various values of w  is given in 

Fig. C-2; the rapid increase in the number of iterations as w  -+ 1.0 

is to be noted. 

The rate of convergence can be substantially improved by using 

an over-relaxation factor R (the improved estimate for the n-th 

iteration is denoted by x (n)*), i.e., i 

(n) * = (n-1) + R(x(n) _ x(n-l) ) 
X. X. 

1 1 i i , etc. 

It was found desirable to use a value of R in the neighborhood of 

1.3 (for the second example given in the next section, a value of 1.3 

yielded approximately a 40% reduction in the required number of 

iteration cycles). 

Laplacian scheme 

If w  is equal to zero, equations C-1 and C-2 reduce to 

1 
X =- 

i 2Ni x 
(x +x 1 n. 

n=l 3 nR 
(C.3) 

i=l+I 

Ni 

Yi = j+ 
c (Yn, + Yn ) (C-4) 

i n=l 7 R 

Application of the above equations to obtain coordinates of the i-th 

node as shown in Fig. C.3 yields 

x. =- 1 
; (x. + x. + x. + x. ) 

=1 12 i3 i4 

'i = $ (Y. + Y. + y. + y. ) 
il i2 i3 i4 

c-3 

(C-5) 

i=l+I 

(C-6) 
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This scheme is very simple to apply; however, it suffers from a 

serious drawback. It has a tendency to distort interior elements and, 

in the case of complicated shapes, coordinates of interior nodes can 

even be established outside of the body producing erroneous results. 

Alternative methods such as the isoparametric scheme were 

developed specifically to avoid such problems. Theoretical 

development of the isoparametric method is given in the following 

section. 

Isoparametric scheme 

The following equations apply to an isoparametric scheme (w = 1): 

1 
X =- 

i Ni 

yi = ; 
i 

Ni 

c 
(x +x -x ) 

n. 
n=l 3 "i nk 

Ni 

c 
(Yn,+Yn -Y 1 

n=l 3 R nk 

(C-7) 

(C-8) 

For the grid shown in Fig. C.4 the above equations can be reduced to: 

X 
i 

= $ [2(x. + x, + x. 
ll I2 I3 

+ x, ) - (x. + x. + x. 
l4 + xi8)1 

(C.9) 
I5 =6 =7 

i=l-+I 

'i = $ [2(Y. + y. + y. + y. ) 
il i2 i3 i4 

- (Y. + Y. + Y. + y. )I 
I5 =6 I7 I8 

(C.10) 

These expressions can be written in terms of a second order 

isoparametric transform. For an element defined by eight external 

nodes and quadratic shape functions (N(c, n)) the transformation 

between x, y and 5, n coordinate systems, where the origin of 

51 rl coordinates coincides with node i, may be written in the form 
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8 

X. = x(5 = 0, T-) = 0) = 
1 c 

m=l 

8 

'i = y(C = 0, q = 0) = 
c 
m=l 

X. Nm (5 = 0, T-l = 0) (C.11) 1 m 

'i 
Nm (5 = 0, 7-l = 0) (C-12) 

m 

Upon expansion the above expressions will be identical with equations 

C.9 and C-10. 

Illustrative examples 

Two relatively simple examples of grids generated by the 

isoparametric procedure, the Laplacian procedure, and (for the first 

example) an intermediate procedure are shown in Figs. C.5 and C-6 to 

illustrate the effects of boundary node spacing and boundary curvature, 

respectively. The exterior nodes were defined by specifying the 

coordinates of the nodes lying on the ends of the straight or circular 

boundary segments; these values were used in conjunction with a 

straight or circular line generator to locate the intermediate 

boundary nodes. 

Data Preparation 

The finite element procedure requires the subdivision of the 

solution domain into a net of defined geometrical shapes (usually 

triangles or quadrilaterals in two-dimensional space). Because the 

detailed preparation of such grids may be quite laborious, semi- 

automatic generation procedures have been developed. The procedures 

available in this program are described in the following paragraphs. 

The region to be analyzed is represented by a series of 

quadrilateral elements, as shown in Fig. C-7. Each grid is defined by 

the nodal coordinates and the sets of eight node numbers which 

describe particular elements. 
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Attaining a satisfactory grid is an evolutionary process which 

often requires consideration of a number of alternatives before 

desired results are obtained. It is recommended that, initially, a 

rough sketch be made of the body with nodes placed at approximately 

their desired locations; the nodes and elements should be numbered on 

the sketch. A proper numbering scheme for the nodes is extremely 

important to the minimization of computational cost of a finite 

element analysis. For a given element, denote the greatest difference 

between the numbers of any two of the eight nodes which define the 

element as N i' Denote the maximum value of N i for the whole system 

as N max. To minimize computational effort, it is important that the 

node points be numbered so as to minimize the value of N (the 
max 

numbering used in Fig. C-7 gives N max = 13; if the numbering had 

instead proceeded from left to right a value of N = 19 would have 
max 

been obtained). 

The sketch of the proposed grid is used to determine how the 

available generation procedures can best be applied to assist in 

preparation of the input data. 

A stepwise description of the procedure is given in the 

following paragraphs. 

1. The program has two available generation procedures to 

assist the user in describing the location of the node points. The 

use of these options can, for instance, permit one to describe the 

location of all the nodes for an arbitrarily large grid by as few as 

five cards. 

2. The "circular arc (or straight line) coordinate generation 

option" may be used whenever several sequential points (either 

interior or exterior points) lie along a circular arc or straight line. 

For such points it is only necessary to enter the coordinates for the 

end points (denoted as N and N') of the sequence and the required 

generation information, INCR, INCR2, D and XC, YC. The generation 

information is entered on the second of this pair of cards, i.e., on 

the data card for N'. (The card for N' could also serve as the 

beginning card for a second segment N'-N"; the generation data for 
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this segment would be contained on the card for N", etc.). INCR is 

the difference between the numbers of any two successive corner nodes 

in the sequence, and D is the ratio of the distances between 

successive pairs of corner points. For circular arcs XC, YC are the 

coordinates of some intermediate point on the arc, and INCR2 is the 

difference between N and the node number of the adjacent mid-point 

(to be used only if the elements along this arc are to have curved 

sides). If INCR f 0 then intermediate points are generated along a 

straight line (XC = YC = 0) or a circular arc (XC # 0 and/or YC # 0) 

between N' and the point described on the previous node card (N). 

That is, corner points N + INCR, N + 2 INCR,...,N' - INCR are 

generated. If the segment is a circular arc, it is defined as passing 

through the end points N and N' and some intermediate point (not 

necessarily one of the nodes) whose coordinates are (XC, YC). If 

INCR2 # 0 for a circular arc, then the midpoints N + INCR2, N + 

INCR + INCR2, etc., are also located on the arc; otherwise they are 

located on straight lines connecting the corner points. 

The ends of the segment may be entered in any order, i.e., the 

segments shown in Fig. C.8 may be defined by specifying the end points 

in order 7-+22 or 22-+7. The spacing of the intermediate corner 

node points is controlled by the value of the spacing ratio D. D is 

equal to the ratio of the lengths of the successive segments defined 

by the intermediate corner node points. A value of D = 1.0 gives 

equally spaced corner points (if D is left blank, it defaults to 

1.0). The locations of the intermediate corner points 12 and 17 (see 

Fig. C-8) could be generated by either specifying points 7 -f 22 and 

D = 2.0 (Note: D = 2.0/1.0 = 4.0/2.0), or 22 -f 7 and D = 0.5 

(Note : D = 2.0/4-O = 1.0/2-O); the value of INCR would be 5. For 

the circular arc of Fig. C.8a, if the element sides are to be curved 

and the segment is generated in the order 7 -f 22, then INCR2 = 2; 

if it is generated in the opposite way, 22 + 7, then INCR2 = -3. If 

INCR2 = 0, for a circular arc the element sides connecting the corner 

points will be straight. 
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Fig. C.8a. Node Points Lying on a Curved Line 

Fig. C.8b. Node Points Lying on a Straight Line 
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For the grid shown in Fig. C-7, the line segment generation 

procedure could be used to locate exterior points 1 -+ 56, 56 + 58, 

58 + 62, 62 + 51, 51 + 7, 7 -+ 1. In addition, if desired, it could be 

used to locate interior points 12 -f 18, etc. 

Sometimes when using this generation procedure, it is necessary 

to enter a card for a point whose coordinates have already been 

specified or generated; e.g., one might generate 51 -+ 7 (Fig. C.7) 

then wish to generate 18 + 12. In such cases one need not enter the 

coordinates for the point a second time, instead the number of the 

point is entered with a minus sign and XP, YP are left blank. 

3. The "interior node point generation option" locates all 

corner nodes interior to the body whose coordinates have not been 

explicitly specified by the user (either by direct input of the 

coordinates or by use of the line segment generation option). A 

family of generation schemes is available to the user; this family is 

dependent upon a parameter (supplied by the user) WTLMAX with a 

range of 0 -t 1.0. A detailed description of this generation procedure 

is given in the section entitled "Theory." The parameter w  used in 

that section is related to WTLMAX by the equation WTLMAX = 1.0 - w  . 

This definition of WTLMAX yields an isoparametric grid for WTLMAX 

= 0.0 and a Laplacian grid for WTLMAX = 1.0 ; thus if WTLMAX is 

left blank, it defaults to the isoparametric grid. 

It must be remembered that all corner nodes on the boundaries of 

the body must be either directly specified or generated by means of 

the line or arc segment generation scheme. In certain situations it 

may be desirable or even necessary to locate individually (or by means 

of the line generation option) certain interior points. The direct 

location of some interior points may be required to describe an 

interface between flows of varying densities or to improve the shape 

of the generated grid. Finally, the coordinates of all midpoint nodes, 

except those specified to lie on circular arcs, are generated so that 

the straight lines connecting the two adjacent corner points are 

divided into equal parts. 
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4. Once coordinates of the nodes have been specified or 

generated, the final task is to develop nodal connections (i.e., the 

numbers of the eight nodes defining the element) for all the elements, 

NOD(NELEM,8). Two alternatives are provided. One is to enter the 

information element by element, and the other is to generate it 

internally within the program. Internal element data generation is 

again dependent on specific grid numbering patterns, namely repeating 

nodal increments. 

To utilize the "element data generation option," it must be 

possible to divide the grid into layers. A layer of elements is 

defined as a series of elements for which six of the eight node 

numbers of adjacent elements differ by two and the other two by one; 

e.g., the node numbers for elements 1 and 2 of Fig. C.7 are: 

1 8 12 13 14 9 3 2 

3 9 14 15 16 10 5 4 

Thus elements 1 + 3, 4 -f 6, etc., of Fig. C.7 each constitute a layer. 

Let the number of elements in each layer be NMIS + 1. If the grid is 

regular then the corresponding node numbers of elements in adjacent 

layers will differ by a constant; denote this numbering increment by 

INCRP and the total number of layers by NMISP + 1. Thus the element 

information for the grid shown in Fig. C.7 can be completely described 

with one card containing the eight node numbers of element 1 and 

NMIS = 2, NMISP = 4, and INCRP = 11. The element numbers are assigned 

by the generation procedure beginning with the elements of the first 

layer and then proceeding to the second, etc. 

5. The program output consists of a scaled plot of the grid, 

with node and element numbers being indicated at the discretion of the 

user. In addition, geometrical information (node numbers and their 

coordinates) and element nodal connections are printed. If the 

program data contains some inconsistencies which result in a non- 

positive area for a given element, an error message is printed, 

together with node numbers attributed to this element. The nonpositive 
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area is normally a result of a data error; e.g., (1) the nodes 

describing the element were entered in a clockwise manner instead of 

counterclockwise; (2) one of the node numbers describing the element 

was entered incorrectly; or (3) the coordinates for one of the nodes 

describing the element were entered incorrectly. 

6. A set of options which deal with the format of the output 

plot are provided. These options include the following: PAPS - paper 

size (i.e., plot size in the limiting direction, width of the paper, 

is PAPS - 3.0); ENS - element number size in inches (it is recommended 

that element number size be twice the node number size); and codes 

IOPT(1) and IOPT(2), which determine whether the element and node 

numbers will be provided with the plot. 

GRIDR is capable of generating elements whose sides are 

circular arc segments. In such a case, a non-zero value for INCR2 

is entered and an actual arc is plotted on the output grid. There 

are provisions for up to 20 such arcs for each grid. If a larger 

quantity is desired, the arrays XI, YI, RI, THO, THF, and IFL will 

have to be redimensioned. 

All the plotting instructions given in the program and manual 

apply specifically to the UCD PLOT PACKAGE library program. The plots 

are executed on a CAL COMP Digital Incremental Plotter Model 563, 

which is an off-line system. If the program is executed on another 

system, the following statements may require modification. 

Line # 

1330 

3190 
3200 

3210 

3480 

3580 
3770 

Statement 

CALL PLOT 

CALL SCALE 

Purpose 

Open plot file. 

Scale Y and obtain maximum 
and minimum values for X and Y. 

CALL PLOT 

CALL LINE 

Offset plot origin. 

Draw line(s) between 
specified array of points. 

CALL NUMBER Write a number at specified 
coordinates. 

3630 CALL SYMHOL Plot a special symbol or 
write an EBDIC string. 
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3710 CALL CIRCLE 

3780 CALL PRBXIT 

Plot a circle or its segment. 

Close plot file. 

Lines 1000-1050 are Burroughs 6700/7700 system commands and should be 

suitably modified for other systems. 

As the program is now dimensioned, the value of N 
max may not 

exceed 55, the maximum node number NPT may not exceed 700, and the 

number of elements NELEM may not exceed 600. These limitations may 

be modified by changing the dimensions of the program. If any one of 

these restrictions is violated, an error message is printed and the 

program proceeds to the consideration of the next problem. 

When changing the dimensions of the program two areas must be 

considered: 

a. Dimension statements 
b. The dimension checks at the end of the program. - 

The dimensions in the program which are related to the size of the 

problem are indicated below: 

X(Nl), Y(Nl), NOD(N2,8) I SOJIA 

where 

N 1 = maximum node number 

N 2 
= maximum number of elements. 
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User's Manual 

The input data required for the program is entered by means of 

the following set of cards. 

(1) Title Card (12A6) 

Columns l-72 TITLE Any information that is 
to be printed as a title 
for the problem. 

(2) Option Card (2F10.3,215,F10.3) 5* 

Columns l-10 

11-20 

21-25 

PAPS 

ENS 

Plotting paper size (12 
or 30 inches for Cal 
Comp Plotter Model 563). 6 

Element number size in 
inches. 

IOPT (1) Specifies whether to 
plot the element numbers. 
When set to 1 numbers 
will not be plotted, 
otherwise leave blank. 

IOPT(2) Specifies whether to 
plot the node numbers. 
When set to 1 numbers 
will not be plotted, 
otherwise leave blank. 

WTLMAX Grid generation 
parameter. 3 

26-30 

31-40 

(3) Node Point Data Identification Card (11) 

Punch 1 in column 1 -- indicates that node point 
data follows. 

(4) Node Point Information Array (11,14,2F10.3,21t,3F10.3) 1 

Column 1 NSEC Leave blank. 

2-5 N Node point number. 

6-15 XP x-coordinate of the node. 

16-25 YP y-coordinate of the node. 

* Reference to paragraph numbers in section entitled "Data Preparation." 
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(5) 

Use as many cards as are necessary to specify or 3 
generate the locations of all exterior corner nodes. 

Element Data Identification Card (11) 

Punch 2 in Column 1 -- indicates that element data 
follows. 

(6) Element Information Array (11,14,1015) 

36-45 D 

46-55 XC 
56-65 YC 

26-30 INCR Numbering 
increment. 

31-35 INCR2 Numbering 
increment 
between 
corner 
node and Quantities 
midpoint associated 
on a with 
circular curved or 

straight 2 arc. 

Spacing line 

ratio. generation 
option 

Coordinates 
of a point 
interior to 
circular 

blank for 

Column 1 

2- 5 
6-10 

11-15 
16-20 
21-25 
26-30 
31-35 
36-40 

41-45 

NSEC 

NODP(8) 

46-50 

NMIS The number of additional 
elements in the layer. 4 

NMISP Number of additional 
layers. 

51-55 INCRP 

Leave blank. 

The numbers of the eight 
node points which describe 
the element. Enter the 
nodes in sequence, 
reading counterclockwise 
around the element. The 
first entry must be a 
corner node. 

Numbering increment for 
the layers. 
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As many cards as are necessary to define all the 
elements in the system. The order of the element 
cards need bear no relationship to the locations 
of the elements in the body. 

(7) End Card 

Punch 3 in Column 1 -- indicates end of data. 
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Example Problems 

To enhance user's comprehension of the program, a number of 

examples are provided. They are presented in order of increasing 

complexity with detailed explanations appended. 

Example problem #l 

The simplest finite element network to generate is a rectangular 

grid. 

The solution domain in this case is a 60 x 40 node rectangle. 

A preliminary grid is sketched in Fig. C-9 and two possible numbering 

schemes are presented. The choice of the numbering scheme is 

dependent upon the value of N (see 
max 

"Data Preparation" section), 

which in turn influences the computational cost of the problem. The 

lowest cost is obtained whenever Nmax is minimized. On the basis 

of this criterion, the grid pattern shown in Fig. C.9a (N =17-l 
max 

= 16) is adopted, since for Fig. C.9b Nmax is 23 - 1 = 22. 

Upon inspection of the grid, it is evident that the node numbers 

do form an incremental sequence along the boundaries of the body. 

Since these boundaries are straight lines, the "straight line node 

generation option" is used. Nodes are generated along lines: 1 + 9, 

INCR = 2; 9 -+ 93, INCR = 14; 93 -f 85, INCR = -2; and 85 + 1, 

INCR = -14. The input format for these data is illustrated in 

Fig. c.10. Only the coordinates are specified for the first entry 

(node #l), and the generation option data is entered on the subsequent 

node card (node #9). The next statement generates nodes from #9 to 

#93 (coordinates for node #9 have already been specified on the 

previous card). D is set to 1.0 (recall that the default value is 

1.0) since the grid is equally spaced, and INCR2 is zero because 

circular arc generation is not performed. Once the boundary nodes are 

established, the program generates the interior node coordinates. 

The element nodal connections must now be established. The grid 

shown in Fig. C.9a lends itself nicely to division into element layers. 

The first such layer is composed of elements 1, 2, 3, and 4. In this 

case nodal connections for element 1 are entered, starting with a 
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corner node (#l) and proceeding counterclockwise around the element 

(nodes #lo, 15, 16, 17, 11, 3, 2). There are 3 more elements in the 

layer which possess the same nodal increment, i.e., NMIS = 3. There 

are 5 more layers such as the one described above. Therefore, NMISP 

is set to 5 and INCRP = 14 (see Table C-1 for additional details). 

The resulting output consists of nodal coordinates along with element 

information and the grid plot shown in Fig. C-11. 

Example problem #2 

In this case a square body consisting of two different materials 

whose interface is a circular arc is presented in Fig. C.12. Since 

the dimensions of the body are equal in both directions, and the 

elements are equally spaced, N 
max 

will be the same regardless of 

numbering pattern (N = 26 - 1 = 25). 
max Due to the node numbering 

system, again it is possible to use the "node generation options". 

The generation sequence of boundary and interface points is as follows: 

70 -+ 162, INCR = 23; 162 -f 170, INCR = 2; 170 -f 176, INCR = 2; 

176 -f 15, INCR = -23; 15 -f 1, INCR = -2; 1 -+ 70, INCR = 23; 70 + 78, 

INCR = 2, INCR2 = 1 (XC = 25.0, YC = 15.8); 78 -+ 170, INCR = 23, 

INCR2 = 11 (XC = 15.8, YC = 25.0). Elements with curved sides are 

used along the circular interface; thus values for XC, YC, and INCR2 

must be entered. Each circular arc is uniquely defined by specifying 

a third point (XC, YC) on the arc (see Fig. C.13). Whenever nodes 

#70 and 170 are used again they are entered with a negative sign and 

XP together with YP are left blank. The boundary nodes are equally 

spaced; therefore D is set to 1.0 by default. 

Development of nodal connections for this example is somewhat 

more difficult; nevertheless, three distinct element layers can be 

identified. The first layer contains elements 1, 2, 3, 4, 5, 6, and 

7; the second layer, elements 22, 23, and 24; and the third, elements 

34, 35, 36, and 37. Each of these layers is associated with a similar 

set of elemental layers. For example, the layer containing elements 

#34, 35, 36, and 37 has three layers above it which are similar. 

Therefore, node numbers for element 34 are entered counterclockwise, 

starting with corner node #70 along with NMIS = 3, NMISP = 3, and 
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Fig. c.12. Example Problem #2, Grid Sketch 
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INCW = 23. The plotted results are shown in Fig. C.14. If INCR2 

is not specified for a circular arc, then elements with straight sides 

are produced. 
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APPENDIX D: CONTOUR PLOTTING USING SHAPE FUNCTIONS 

Graphical output is invaluable in visualizing simulations which 

would otherwise require the processing and plotting of thousands of 

numbers. A contour plotting routine that can plot contours from data 

points at the corners of arbitrary quadrilaterals is presented here. 

Interpolating Using shape Functions 

Since the finite element grids used in this and in many other 

studies are composed of interconnected quadrilateral elements, it is 

necessary to interpolate from values available at the corners and 

midside nodes of quadrilaterals. Most contour plotting programs use 

data on a rectangular grid and plot the contours by interpolating 

linearly on the boundary of each cell. Each contour would then be 

composed of a number of line segments connected at cell boundaries. 

Using the shape functions themselves in making the interpolations 

has these main advantages: 

a. - Quadrilateral elements present no problem since the 
isoparametric transformation to a square can be made with 
ease. 

b. - Since the approximation contains quadratic terms, it will 
yield a better approximation to the function than a linear 
approximation. 

C. - More detail can be obtained by using sub-elements within 
each element. 

d. Such a plot made from the results of a finite element - 
program would actually give the exact values of the function 
within the element that the solution predicts since the same 
shape functions are used in the minimization and the plotting 
routine. 

e. - Easy programming and relatively low cost. 

Consider a four-noded quadrilateral element. The values of the 

function to be plotted will be known at the corners of the 

quadrilateral. If the global coordinate system is (x, y) and the local 

coordinate system (5, n) then, as in Appendix A, shape functions N 
i 

(5, n) may be defined so that 
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x=N x 
i i (D.1) 

Y = Ni yi (D-2) 

f=N f 
i i (D-3) 

where (x, y) are the coordinates of some point within the element and 

f the function value at that point. The quadrilateral is transformed 

to a square so that all elements will be the same square in the (5, n) 

plane for easy subdivision. 

An example of the mapping of the approximation Ni f. to the I. 
function within an element is shown in Fig. D-1. The contour of value 

n is the projection on the base of the intersection of the plane 

parallel to the base and n units above it and the function surface. 

Such a projection is shown in Fig. D-2, together with the straight 

line obtained by joining the interpolated points on the boundary, 

which is the method used by many contour plotting routines in 

existence. 

There are two possible methods of obtaining this intersection 

curve, i.e., contour. The first is to determine the 5 and n 

coordinates of a number of points within the element which satisfy 

f =N f (D. 4) n ii 

then, determine the corresponding (x, y) values of these points from 

the relationships in equations D.l and D.2, and plot the contour of 

value f. However, where the contour doubles up on itself multiple 

values of the coordinates result, leading to difficulties in 

determining which points to join. The second method is to subdivide 

the element into a series of sub-elements and determine the function 

value at the corners of each sub-element using equation D.3. Linear 

interpolation is then used to obtain the line segments which form the 

contour within the element. 
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Fig. D.1. Approximation to Function Within the Element 

Elevation Above Base Plane 

2 6 

Fig. D-2. Element With Contours Using Shape 
Function and Linear Approximation 
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Higher order approximations would require intermediate nodes 

and can be used in exactly the same fashion, but the sub-elements 

would still have only four corner nodes. 

Certain ambiguous cases where it is not possible to say which 

way the contour should be sketched are shown in Fig. D.3 for a contour 

of value 1. 

1 1 --e-w \ / \ 
w \ /’ \ / \ / 
3 0 

Fig. D-3. Ambiguous Cases 

However, the subdivision of such an element will result in a 

mathematically correct contour. This is an added advantage of using 

shape functions for interpolation. 

Data Preparation 

Three types of data can be used for contour plotting with the 

program CONTR/MK2: finite element grid, finite difference rectangular 

grid, and measured values on either a quadrilateral or rectangular 

grid. The program has a built-in rectangular grid generator which 

assigns node numbers and nodal connections to data which is not in the 

finite element form. Automatic scaling and optional determination of 

contour values in the range of function values are features of the 

program. 

Contours can be labeled in ascending order of magnitude given in 

the legend, or the contour value itself can be written on the plot 

provided it is an integer between 1 and 999. The x and y axes may 

be plotted if desired. Examples of contour plots made by the program 

are shown in Figs. D.4 and D.5. 
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User's Manual 

The input data required for the program are entered by means of 

the following cards: 

(1) Title Card (8A6,12) 

Columns 1-48 TITL Any information to be printed 
as a title for the problem. 

49-50 NN Number of alphanumeric 
characters in the title string. 

(2) Option Card (2F10.5,F5.2,915) 

Columns l-10 PAPER Plotting paper size (12 or 30 
inches for Cal Comp Plotter 
Model 563). 

11-20 DY Scaling factor in y-direction 
(units/inch). If @PTI@N(4) = 0 

DY should be left blank. 

21-25 HCN Size of the contour label 
number. Minimum value is 0.07 
inch. If HCN is less than 
0.07 or left blank, it is set 
to 0.07 by default. 

26-30 @PTI@N(~) = 0 

1 

31-35 @PTI@N(2) = 0 

1 

36-40 @PTI@N(3) = 0 

1 

41-45 @PTI@N(4,) = 0 

1 

Finite element or quadri- 
lateral grid type data. 
Finite difference or 
rectangular grid type data. 
Grid generated through 
RGRID subroutine. 

Contour values computed 
automatically by (FMAX-FMIN) 
/NC. 
Contour values read in by 
the user. 

Labeled "X" and "Y" axes 
will be plotted. 
Axes suppressed (not 
plotted). 

Scaling factor DY (units/ 
inch) is computed auto- 
matically to first signi- 
ficant digit. 
DY and NDP read in by the 
user. 
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~16-50 @PTI@N(5) = 0 Split number (NS) is set to 
5 by default. 

N Split number (NS) equals N. 

51-55 @PTI@N(G) = 0 Contour label numbers 
written. 

1 Contour values written 
(limited to integers from 
l-99) . 

56-60 NC 

61-65 INCR 

Number of contours to be 
plotted. 

Plotter increment count 
between two contour value 
labels (usually z 30). 

66-70 NDP Number of digits past the 
decimal point for the axis 
labels. To be left blank if 
@PTI@N(4) = 0. 

(3) Contour Value Card (8F10.5) 

Columns l-80 K(I) Contour values to be read in 
using F10.5 format. If 
@PTI@N(2) = 0, skip this card. 

(4) Finite Element Information Card* (315) 

Columns l- 5 NP Number of node points. 

6-10 NE Number of elements. 

10-15 NBDR Number of boundary nodes. 

*NOTE: If @PTI@N(l) # 0, skip this card. 

(5) Node Point Information Array* (2(110,3F10.5)) 

Columns l-10 J Node point number. 

11-20 XC(J) X-coordinate of the J-th node 
point. 

21-30 yC(J) y-coordinate of the J-th node 
point. 

31-40 D(J) Function value @ J-th node 
point. 

41-80 Repeat as above 

*NOTE: If @PTI@N(l) # 0, skip this card. 

(6) Element Information Array* (3(515)) 

Columns 1-5 J Element number. 
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6-10 The numbers of four 
11-15 consecutive node points which 
16-20 NPIP(J,K) describe the element. They 
21-25 should be entered in sequence 

counterclockwise around the 
element. 

26-75 Repeat as above twice 

*NOTE: If @PTI@N(l) # 0, skip this card. 

Use as many cards as are necessary to define all elements 
in the system. 

(7) Boundary Node Information Array* (1615) 

columns l-80 NB Consecutive boundary node 
point numbers entered in 15 
format. 

*NOTE: If @PTI@N(l) # 0, skip this card. 

Use as many cards as are necessary to define all essential 
boundary node points. 

(8) Rectangular Grid Generator Information Card* (215,4F10.5, 
110,2F10.5) 

Columns l- 5 NX Number of panels (cell 
segments) in X-direction. 

6-10 NY Number of panels (cell 
segments) in Y-direction. 

11-20 XL 

21-30 YL 

31-40 XR 

Total length in X-direction. 

Total length in Y-direction. 

X-direction spacing ratio. If 
equally spaced XR = 1.0. 
Geometric spacing can be 
obtained by entering a desired 
spacing ratio. 

41-50 YR 

51-60 KC@D 

61-70 DX 

Y-direction spacing ratio. 
Same components apply as above. 

0 No odd panels (segments) 
are to be read in. (All 
equal or geometrically 
spaced.) 

1 Odd panels will be read in 
by the user. 

Length of a regular panel in 
X-direction. Can be left 
blank if KC@D = 0. 
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71-80 DY Length of a regular panel in 
Y-direction. Same comments 
apply as above. 

*NOTE: If @PTI@N(l) # 0, skip this card. 

(9) Odd Panels Information Card* (2110) 

Columns l-10 NDX Number of odd panels in 
X-direction. 

11-20 NDY Number of odd panels in 
Y-direction. 

*NOTE: If KCflD = 0 or @PTI@N(l) = 0, skip this card. 

(10) Odd Panels Information Array, X-Direction* (IlO,F10.5) 

Columns l-10 N Panel number, X-direction. 

11-20 DXX(N) N-th panel size, X-direction. 

*NOTE: If KC@D = 0 or @PTI@N(l) = 0 or NDX = 0, skip this 
card. 

As many cards as are necessary to enter all odd 
X-direction panels. 

(11) Odd Panel Information Array, Y-Direction* (IlO,F10.5) 

Columns l-10 N Panel number, Y-direction. 

11-20 DYY(N) N-th panel size, Y-direction. 

*NOTE: If KC@D = 0 or @PTI@N(l) = 0 or NDX = 0, skip this 
card. 

As many cards as are necessary to enter all odd 
Y-direction panels. 

(12) Function Array Information* (8F10.5) 

Columns l-80 U(I) Function values at each 
corner point, specified 
consecutively along a row or 
column in either X or Y- 
direction (usually Y). 

*NOTE: If @PT@N(l) = 0, skip this card. 

Use as many cards as necessary to specify: 1) all 
function values associated with a corner point along a 
particular row, and 2) all such rows for the whole system. 
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General Comments 

u(6)=12.1 
u(S)=lt.O 

u(4)=6.9 

Ix 
u(8)=16.1 r,,,,,-r,xx ~,., 

For the above problem: 

NX = 7 DX = 5.0 
NY = 6 DY = 3.0 
XL = 30.0 NDX = 2 
YL = 13.0 NDY = 3 
XR = 1.0 N = 3, DXX(3) = 3.0 
YR = 1.0 N = 4, DXX(4) = 2.0 
KC@D = 1 N = 3, DYY(3) = 2.0 

Rectangular grid input 

N = 4, DYY(4) = 1.0 
N = 5, DYY(5) = 1.0 
U(l) = 5.0, u(2) = 6.0 
U(3) - 5.1, etc. 
U(i) must start on 
a new card in 
columns l-10. 
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(1) Maximum allowable DY is computed in the following way 

(YMAX - YMIN)/(PAPER-4.0). Automatic scaling routine 

computes DY to maximum one significant figure number. 

(2) Spacing ratio (XR, YR) is a ratio between lengths of two 

consecutive cell segments. 

4 I, 2 ,I 1” 
a 1 + XR = 0.5 

I 

4 2 34 
2 I’ 

1 I, 3” 9 II 
e = -31,XR=3 

3 5 6 1 8 

2 II 

L 

(3) 

(4) 

(5) 

1 

YR = 1 

In the interest of program efficiency, data should be 

entered consecutively into both Node Point Array and Element 

Array. 

If there are more function values along a given row than 8, 

continue on the next card(s) until all the information for 

that particular row is entered. First function value for 

each row must be entered on a new card in ~01s. l-10. 

At present C@NTR/MK3 has the following dimensions: 

a. Maximum number of nodes - 1500; U(lSOO), XC(1500), - 
YC(1500). 

b. Maximum number of contours - 20; FC(20). - 
C. Maximum number of boundary nodes - 500; NB(500), NBDR. 
z. Maximum split number - 100; NS, Xx(100), YY(lOO), - 

SI(lOO), ET(100). 
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APPENDIX E: USER'S MANUAL FOR SEDIMENT II 

Due to the volume and complexity of the input data needed to make 

a full-scale simulation, it would often be easier to change the format 

of the read statements in the program than to change the form of the 

data. A description of the input routines is given in this section 

following general comments on data preparation. 

Data Preparation 

Although a concerted effort was made to quantify parameters that 

would aid in the selection of optimal grid and time spacing, only 

qualitative descriptions may be inferred from Part V of the main 

text. The choice of grid and time step size is critical., and the user 

can depend on experience, if there is any available, or use the 

classical method of subdivision, i.e., an initial grid and time step 

are first used to simulate a few time steps of the problem, the grid 

is then subdivided and the run made again. The difference between the 

results of the two runs at common nodes is a measure of the error in 

the numerical solution. If the error estimate is higher than 

acceptable, the grid may be further subdivided. The same process can 

be applied to the time step size. The cost and time spent in so 

selecting the proper discretizing parameters will be returned many 

times over when the full simulation is made. 

Input 

The program has a built-in rectangular grid generator to 

facilitate the use of the velocity profiles generated from finite 

difference programs or measured on rectangular meshes. 

Nodal connections, initial concentrations, and initial bed 

profile are read in subroutine INPUTl. This subroutine is only called 

once at the beginning of each execution. When the grid-generating 

program is used, the node point coordinates and nodal connections must 
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be stored and then read into the main program. New flow field and/or 

boundary conditions are read by subroutine INPUT for appropriate time 

steps. 
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User's Manual for Sediment II (Vertical Model) 

CARD 1 

Columns l-72 TITLE 

CARD 2 (8110) 

Columns l-10 NOPT 

11-20 NP 

21-30 NE 

31-40 NPX 

41-50 NDCOD 

51-60 NTTS 

61-70 NGRID 

For transient problems (i.e. 

CARD 3 (3F10.5) 

Columns l-10 TETA 

11-20 DT 

21-30 TIM(l) 

SET 4 (8011) from 1 + NP 

NFIX(J) 

For NGRID = 1: rectangular 

CARD 1 (2110,4F10.5) 

Columns 11-20 NX 

21-30 NY 

31-40 XL 

41-50 XY 

51-60 XR 

61-70 YR 

Problem option. 
1 Steady state concentration 

problem. 
2 Unsteady concentration 

problem. 
3 Sediment problem 

(transient). 

Number of node points. 

Number of elements. 

Number of corner nodes. 

No initial bed profile if 0, 
otherwise 1. 

Number of time steps. 

Generate rectangular grid if 
equal to 1, otherwise 0. 

I NTSS > l), include this card. 

Crank-Nicolson weighting 
function. 

Time increment. 

Initial time. 

1 if concentration specified 
at this node or 0. Use as 
many cards as necessary. 

grid is generated. 

Number of panels in x-direction. 

Number of panels in y-direction. 

Total length in x-direction. 

Total length in y-direction. 

Grid spacing ratio (x). 

Grid spacing ratio (y). 
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CARD 2 This card is designed for test problems only. It 
sets the same values of all the parameters below 
for all elements and nodes. (8F10.5) 

columns l-10 Xv x-velocity. 

11-20 YV y-velocity. 

21-30 DIFX x-diffusion coefficient. 

31-40 DIFY y-diffusion coefficient. 

41-50 ELS Element source terms. 

51-60 DEEP Width of channel. 

61-70 cccc Initial concentration. 

71-80 vss Settling velocity. 

CARD 3 (110) 

Columns l-10 NCARDS Number of cards on which B.C. 
are specified next. 

CARD 4 et seq to NCARDS (IlO,F10.5) 

Columns l-10 NUM Node point number. 

11-20 SPEC(NUM,l) Specified concentration. 

If NGRID = 0, the geometry and element properties are read 
in by Subroutine INPUTl. 

SET 1 (1015,2F5.2,2F10.5) 1 -+ NE 

Columns l- 5 J Element number. 

6-10 WBE(J) Equals 1 if bottom element, 
otherwise 0. 

11-50 NOP(J,K) Nodal connections (15). 

51-55 DIF(J,l) x-diffusion coefficient. 

56-60 DIF(J,2) y-diffusion coefficient. 

61-70 VS (J) Settling velocity. 

71-80 TAUCD(J) Critical shear stress for 
deposition. 

SET 2 (4(IlO,F10.5)) 1 -f NP 

4 pairs of values on each card. 

(110) ,K Node point number. 

(F10.5),C@NC(K) Initial concentration at node 
K. 

Initial bed profile read if (NCOD # 0). 
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SET 3 (215,14F5.2) 

Only for bottom elements. 

Columns l- 5 J 

6-10 NLAY(J) 

11-45 THICK(J,K) 

46-80 SST(J,K) 

Transient problem input. 

CARD 1 et seq (1615) 

IFF(J,l) 

CARD 2 et seq (1615) 

IFF(J,2) 

Element number. 

Number of layers on bottom, 
maximum 7. 

Thickness of each of the 7 
layers, enter 0 for non- 
existent layers (F10.5). 

Shear strength of the 7 
layers. 

Input code for each time 
step; 0 for first time step. 
0 No input at this time step. 
1 New velocity field to be 

read in. 
2 New boundary conditions 

only. 
3 New velocities and boundary 

conditions read. 

Output code for each time step. 
0 No output. 
1 Bed profile and erosion/ 

deposition rate. 
2 Concentrations only. 
3 Both. 

Subroutine INPUT is called whenever IFF(J,l) # 0. 

a) If IFF(J,l) = 1 (Velocity field only). 

SET 1 (110,4F10.5) 1 -f NP 

Columns l-10 J Node point number. 

11-20 CORD(J,l) x-coordinate. 

21-30 CORD(J,2) y-coordinate. 

31-40 SVEL(J,l) x-velocity. 

41-50 SVEL(J,2) y-velocity. 

SET 2 (110) (New Diffusion Coefficients & Settling 
Velocities) 

Columns l-10 NCAR Number of cards to follow. 
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SET 3 (110,3F10.5) 1 -+ NCAR 

Columns l-10 N Element number. 

11-20 DIF(N,l) x-diffusion coefficient. 

21-30 DIF(N,2) y-diffusion coefficient. 

31-40 w(N) Settling velocity. 

b) If IFF(J,l) = 2 (Boundary conditions only) 

CARD 1 (110) 

Columns l-10 NCARDS Number of cards to follow. 

SET 2 (4(IlO,F10.5)) 1 -f NCARDS 

4 pairs on each card. 

J Node point number (110). 

SPEC(J,l) Specified concentration (F10.5). 

cl If IFF(J,l) = 3 

Read set (b) first then (a). 

User's Manual for Sediment II (Horizontal Model) 

CARD 1 

Columns l-72 TITLE 

CARD 2 (F10.5) 

Columns 11-20 TETA 

CARD 3 (8110) 

Columns l-10 NOPT 

21-30 NP 

31-40 NE 

41-50 NPX 

51-60 NDCOD 

Crank-Nicolson weighting 
function (leave as 0 if 
steady problem). 

Problem option. 
1 Steady state concentration 

problem. 
2 Unsteady concentration 

problem. 
3 Sediment problem 

(transient). 

Number of node points. 

Number of elements. 

Number of corner nodes. 

No initial bed profile if 0, 
otherwise 1. I 
Number of time steps. 61-70 NTTS 
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71-80 NGRID Generate rectangular grid if 
equal to 1, otherwise 0. 

For NGRID = 1: rectangular grid is generated. 

CARD 1 (2110,4F10.5) 

Columns 11-20 NX Number of panels in 
x-direction. 

21-30 NY Number of panels in 
y-direction. 

31-40 XL Total length in x-direction. 

41-50 XY Total length in y-direction. 

51-60 XR Grid spacing ratio (x). 

61-70 YR Grid spacing ratio (y). 

CARD 2 (BF10.5) 

(This card is used for test problems where uniform 
velocities, depths, and diffusion coefficients are used.) 

Columns l-10 xv x-velocity, cm/set. 

11-20 YU y-velocity, cm/set. 

21-30 DIFX x-diffusion coefficient, 
cm2/sec. 

31-40 DIFY y-diffusion coefficient, 
cm2/sec. 

41-50 ELS Element source, gm/cm'/sec. 

51-60 DEEP Depth of flow, cm. 

61-70 cccc Initial concentration, 
gm/cm3. 

CARD 2 (110) 

Columns l-10 NCARDS Number of cards on which B.C. 
are specified next. 

CARD 3 et seq to NCARDS (IlO,F10.5) 

Columns l-10 NUM Node point number. 

11-20 SPEC(NUM,l) Specified concentration. 

If NGRID = 0, the geometry and element properties are read 
in by Subroutine INPUTl. 

SET 1 1 + NPX (110,2F10.5) 

Columns l-10 J Corner node number. 

11-20 CORD(J,l) x-coordinate of node point J. 

21-30 CORD(J,2) y-coordinate of node point J. 
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SET 2 1 + NE (TI5,5X,2FlO.5) 

Columns 1-5 J Element number. 

6-45 NOP(J,K) The eight nodes (counter- 
clockwise) that define the 
element (15). 

51-60 DIF(J,l) x-diffusion coefficient. 

61-70 DIF(J,2) y-diffusion coefficient. 

SET 3 1 -f NP (215,7F10.5) 

Columns l- 5 J Node point number. 

6-10 NFIX(J) Set = 1 if concentration 
boundary condition specified, 
otherwise 0. 

11-20 XVEL(J,l) x-velocity. 

21-30 XVEL(J,2) y-velocity. 

31-40 DEP(J) Depth of flow. 

41-50 ELEV(J) Initial bed elevations. 

51-60 SPEC(J,l) Specified boundary condition, 
if any. 

61-70 CONC(J) Initial concentration. 

71-80 R2(J) Node point source. 

The following cards for transient problems only, i.e., 
NTSS > 1. 

CARD 1 (110) 

columns l-10 NCARDS Number of cards that follow. 

CARD 2 et seq (2(315,F15.5)) 

Columns 1-5 J Time step number (begin with 
1) - 

6-10 IFF(J,l) Input code for each time 
step; 0 for first time step. 
0 No input at this time step. 
1 New velocity field to be 

read in. 
2 New boundary conditions 

only. 
3 New velocities and boundary 

conditions read. 

11-15 IFF(J,2) Output code for each time step. 
0 No output. 
1 Bed profile and erosion/ 

deposition rate. 
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2 Concentrations only. 
3 Both. 

16-30 TIM(J) Total time (sec.) at this time 
step (repeat 1 more set on 
same card). 

Subroutine INPUT is called whenever IFF(J,l) # 0. 

a) If IFF(J,l) = 1 (Velocity field only). 

SET 1 (110,3F10.5) 1 -f NP 

Columns l-10 J Node point number. 

11-20 XVEL(J,l) x-velocity. 

21-30 XVEL(J,2) y-velocity. 

31-40 DEP(J) Depth of flow. 

b) If IFF(J,l) = 2 (Boundary conditions only). 

CARD 1 (110) 

columns l-10 NCARDS Number of cards to follow. 

11-20 SPEC(J,l) Specified concentration. 

21-30 R2(J) Specified point source. 

cl If IFF(J,l) = 3 (Both B.C. and new velocities). 

Read set (b) first then set (a). 
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APPENDIX F: NOTATION 

a 

A 

b 

C’ 

C 

'b 

'i 

co 

cw 
C z 

C ex 
d 

(dm/dt) e 
D 

D m 
D ne 

Dx,DZ,D 
Y 

e 
X 

E 

z 

G 

h 

ha.3 
H 

I 

some reference elevation at which the concentration C 
is known; lateral width (p. B-2) a 

area of element for horizontal model;(length of base x 
width) for vertical model 

the width of base for vertical model 

concentration fluctuations 

suspended sediment concentration (i.e., mass of sediment/ 
volume of solution) 

an approximation to the concentration within an element 

concentration of suspended sediment near the bed 

numerical solution (p. 39) 

initial concentration 

mass of water/volume of suspension 

concentration of uniform suspended particles at elevation 
z above the bed 

exact solution (p. 39) 

depth of flow 

mass rate of erosion per unit area 

entire domain; physical diffusion coefficient (p. 42) 

net mass deposited per unit width of bed 

element subdomain 

turbulent diffusion coefficients 

turbulent diffusion coefficient 

a capture coefficient 

diffusive flux 

local velocity gradient 

the measured height of the deposit surface above the rigid 
bottom; the step size or spacing (p. 38); linear heat 
transfer coefficient for the surface (p. 37) 

the final consolidated height 

frequency of collision due to differential settling 
velocities of different size particles; represents the 
weight coefficients (p. A-7) 

frequency of collision, on one particle by others 
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J 

k 

K 

[Kl 
K 

X 

K2 

K3 
R 

L 

m 

M 

n 

n. I. 
n rn x z 

N 

Ni 

Nk 
N/m2 

NE 

NL 

N Pe 

N1 
N2 

P 

frequency of collision on a suspended spherical particle 

Boltzmann's constant; von Karman's constant 

coefficient involving the derivatives of the dependent 
variable; empirical constant (p. 13) 

steady state system coefficient matrix 

a dispersion coefficient 

empirical constant 

constant describing aggregate properties 

boundary of element 

differential operator 

empirical exponent; the order of convergence (p. 38) 

erodibility constant; molecular diffusivity (p. 21); 
quadratic shape functions (p. A-7); dry mass (p. 33) 

number concentration of suspended particles 

number concentration of particles of type i 

the components of the outward normal to the element 
subdomain D ne 
two-dimensional shape functions (p. A-8) 

shape functions 

shape function (p. A-l) 

shear strength (p. 54) 

number of elements 

number of internal and external boundaries R. 1 
the Peclet number (ratio of convective transport to 
diffusive transport) 

maximum node number 

maximum number of elements 

probability of particles sticking to the bed; fluid 
pressure (p. B-2) 

approximate fluxes 

represents the node point values of the flux for the 
three nodes that are on the side of the element being 
integrated 

the flux source term 

flux from source on the boundary i 

outward normal flux from one element 
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q; 

Q 

QI 
Qo 

R 

R ij 
S 

S 

SAR 

t 

t' 

T 

[Tl 

U’ 

UlVlW 

UIW 

U* 

v 

V 
P 

V 
S 

i? 1 -f 
v2 

W 

§ 

5-l 
Am 

As 

At 

flux from adjacent element 

equals (at/at) - a2 

the observed inflow to the test reach, cfs 

the observed outflow from the test reach, cfs 

a correction factor to be applied to the observed 
velocities at stations 109 + 667 and 125 + 500 to 
achieve an exact system water balance. If all the 
observations are consistent, R = 1.0; over-relaxation 
factor (p. C-3) 

collision radius 

local contour coordinate 
source/sink term to account for addition or removal of 
sediment 

sodium adsorption ratio 

the time of consolidation at which h is measured; 
elapsed time (p. 20) 

a characteristic time 

absolute temperature; thickness of deposit (p. 33) 

consistent mass matrix; coefficient array 

temporal velocity fluctuations 

components of the fluid velocity 

velocity components in X and Z directions 

shear velocity 

relative velocity between particles (p. 9); volume of 
suspension in the element (p. 32) 

settling velocity of individual aggregates in a dilute 
suspension 

settling velocity of sediment 

velocity of water 

velocity of sediment 

weighting coefficient (p. C-l) 

contour integral over the boundary R (p. 30) 

positive roots of BCotB + hL = 0 

mass eroded per unit bed area 

source term 

time interval; a characteristic time in which erosion 
occurs 6 
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Av/At 

& 

E ,E ,E xx xz zx’ 
E 

zz 

k 
=b 

T  cd 
T ce 

+ 

the observed rate of volume change in the reach, cfs 

an estimate of the maximum absolute truncation error 

turbulent exchange coefficients 

exponent = Vs/kU, 

Dx/ux (p. 37) 

implicitness factor (0 = 1, fully implicit) 

viscosity of the water 

variable length along the boundary; boundary contour 

fluid density 

density of clay particle 

density of water 

bulk density of layer 

bed shear stress 

the bed shear at time step n, etc. 

critical shear stress for deposition 

critical shear stress for erosion 

volume concentration of suspended aggregates (p. 13) 
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In accordance with letter from DAEN-RDC, DAEN-AS1 dated 
22 July 1977, Subject: Facsimile Catalog Cards for 
Laboratory Technical Publications, a facsimile catalog 
card in Library of Congress MARC format is reproduced 
below. 

Ariathurai, Ranjan 
Mathematical model of estuarial sediment transport / by 

Ranjan Ariathurai, Robert C. MacArthur, Ray B. Krone, De- 
partment of Civil Engineering, University of California, 
Davis, Davis, California. Vicksburg, Miss. : U. S. Water- 
ways Experiment Station ; Springfield, Va. : available from 
National Technical Information Service, 1977. 

ix, 70, =79= p. : ill. ; 27 cm. (Technical report - U. S. 
Army Engineer Waterways Experiment Station ; D-77-12) 

Prepared for Office, Chief of Engineers, U. S. Army, Wash- 
ington, D. C., under Contract No, DACW39-75-C-0080 (DMRP 
Work Unit No. lB05) 

References: p. 68-70. 

1. Deposition. 2. Erosion. 3. Estuaries. 4. Finite element 
method. 5. Mathematical models. 6. Savannah Estuary. 

(Continued on next card) 

Ariathurai, Ranjan 
Mathematical model of estuarial sediment transport . . . 

1977. (Card 2) 

7. Sediment transport. 8. Sedimentation. 9. Suspended 
load. I. Krone, Ray Beyers, joint author. II. MacArthur, 
Robert C., joint author. III. California. University, 
Davis. Dept. of Civil Engineering. IV. United States. 
Army. Corps of Engineers. V. Series: United States. Water- 
ways Experiment Station, Vicksburg, Miss. Technical report ; 
D-77-12. 
TA7.W34 no.D-77-12 


